【数学II】軌跡がイマイチ掴めない人が「見えた!」を実感するための動画【軌跡と領域】 - 質問解決D.B.(データベース)

【数学II】軌跡がイマイチ掴めない人が「見えた!」を実感するための動画【軌跡と領域】

問題文全文(内容文):
【数学II】軌跡と領域について解説動画です
-----------------
①2点、A(1,0) B(6,0)からの距離の比が2:3である点Pの軌跡を求めよ。

②点Qが円$x^2+y^2=4$の同上を動くとき、A(8,0)と点Qとを結ぶ線分AQの中点Pの軌跡を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学II】軌跡と領域について解説動画です
-----------------
①2点、A(1,0) B(6,0)からの距離の比が2:3である点Pの軌跡を求めよ。

②点Qが円$x^2+y^2=4$の同上を動くとき、A(8,0)と点Qとを結ぶ線分AQの中点Pの軌跡を求めよ。
投稿日:2020.05.09

<関連動画>

長崎大 複素数と整数の融合問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.

長崎大過去問
この動画を見る 

こんな問題が京大で出たことあったんだ【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
縦40cm、横25cmの長方形の紙がある。その四隅から、一辺の長さ$x$cmの正方形を切り取り、残りの紙を折りまげて、直方形の形のふたのない容器を作る。
このとき、この箱の容積を$Vcm^3$とする。$V$が最大となる$x$の値を求めよ。

京都大過去問
この動画を見る 

福田の数学〜立教大学2023年経済学部第3問〜放物線と直線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#面積、体積#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ pを正の実数とする。Oを原点とする座標平面上の放物線C:$y$=$\frac{1}{4}x^2$上の点P$\left(p, \frac{1}{4}p^2\right)$における接線を$l$、Pを通り$x$軸に垂直な直線を$m$とする。また、$m$上の点Q$\left(p, -1\right)$を通り$l$に垂直な直線を$n$とし、$l$と$n$の交点をRとする。さらに、$l$に関してQと対称な点をSとする。このとき、次の問いに答えよ。
(1)$l$の方程式を$p$を用いて表せ。
(2)$n$の方程式およびRの座標をそれぞれ$p$を用いて表せ。
(3)Sの座標を求めよ。
(4)$l$を対象軸として、$l$に関して$m$と対称な直線$m'$の方程式を$p$を用いて表せ。
また、$m'$とCの交点のうちPと異なる点をTとするとき、Tの$x$座標を$p$を用いて表せ。
(5)(4)のTに対して、線分ST、線分OSおよびCで囲まれた部分の面積を$p$を用いて表せ。
この動画を見る 

【高校数学】恒等式の問題演習~係数比較法と数値代入法を分かりやすく~ 1-7.5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等式$x^3+5x^2+4x-4=(x+1)^3+p(x+1)^2+q(x+1)+r$が$x$についての恒等式となるように、定数$p,q,r$の値を求めよ
この動画を見る 

【数Ⅱ】図形と方程式:奇跡的な軌跡の解法③ PだけじゃないてQも動く!?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Qがx²+y²=16上を動くとき、点A(8,0)と点Qを結ぶ線分AQの中点Pの軌跡を求めよ。
この動画を見る 
PAGE TOP