【数学II】軌跡がイマイチ掴めない人が「見えた!」を実感するための動画【軌跡と領域】 - 質問解決D.B.(データベース)

【数学II】軌跡がイマイチ掴めない人が「見えた!」を実感するための動画【軌跡と領域】

問題文全文(内容文):
【数学II】軌跡と領域について解説動画です
-----------------
①2点、A(1,0) B(6,0)からの距離の比が2:3である点Pの軌跡を求めよ。

②点Qが円$x^2+y^2=4$の同上を動くとき、A(8,0)と点Qとを結ぶ線分AQの中点Pの軌跡を求めよ。
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学II】軌跡と領域について解説動画です
-----------------
①2点、A(1,0) B(6,0)からの距離の比が2:3である点Pの軌跡を求めよ。

②点Qが円$x^2+y^2=4$の同上を動くとき、A(8,0)と点Qとを結ぶ線分AQの中点Pの軌跡を求めよ。
投稿日:2020.05.09

<関連動画>

福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xy平面上の2直線L_1,L_2は直交し、交点のx座標は\frac{3}{2}である。\\
また、L_1,L_2は共に曲線C:y=\frac{x^2}{4}に接している。このとき、L_1,L_2およびCで\\
囲まれる図形の面積を求めよ。
\end{eqnarray}

2022京都大学文系過去問
この動画を見る 

#名古屋工業大学2024#不定積分_18#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int\sqrt{ 2 }$ $logx$ $dx$

出典:2024年 名古屋工業大学
この動画を見る 

【次数が高くても焦るな】対称式 入試問題【2017年昭和大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a+b=1,a^2+b^2=3$のとき、$a^7+b^7$の値を求めよ。

2017昭和大過去問
この動画を見る 

福田のわかった数学〜高校2年生052〜領域(7)領域と最大最小(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(7) 領域と最大最小(3)\\
x^2+y^2 \leqq 10, y \geqq 0 のとき、\\
2x-y\\
の最大値と最小値を求めよ。
\end{eqnarray}
この動画を見る 

xにどんな値を代入しても。仙台育英

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#式と証明#恒等式・等式・不等式の証明#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xにどんな値を代入しても5x-P+5=Pxが成り立つ。
P=?

仙台育英学園高等学校
この動画を見る 
PAGE TOP