【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(4)解説 - 質問解決D.B.(データベース)

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(4)解説

問題文全文(内容文):
東京大学 2021年理科・文科第4問(4)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B={}_a\mathrm{C}_b$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。${}_{4a+1}\mathrm{C}_{4b+1}wp4$で割った余りは${}_a\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
チャプター:

0:00 問題文
0:05 前の問題の結果を用いるための準備
1:27 前の問題の結果を用いて簡略化
3:45 エンディング

単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(4)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B={}_a\mathrm{C}_b$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。${}_{4a+1}\mathrm{C}_{4b+1}wp4$で割った余りは${}_a\mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
投稿日:2021.05.30

<関連動画>

スタディーチューブ 企画「チャレンジチューブVol.5」

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$a^2+2b^2=7c^2$を満たす整数$(a,b,c)$の組をすべて求めよ

(2)
$a^2+2b^2=11c^2$を満たす全て2以上の自然数$(a,b,c)$
この動画を見る 

福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。                        
(1)整式$x^3$を2次式$(x-a)^2$で割った時の余りを求めよ。
(2)実数を係数とする2次式$f(x)=x^2+\alpha x+\beta$で整式$x^3$を割った時の余りが
$3x+b$とする。bの値に応じて、このようなf(x)が何個あるかを求めよ。

2022名古屋大学理系過去問
この動画を見る 

整数問題 二項定理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{3^n}+1$は3で何回割り切れるか求めよ。$(n$自然数$)$
この動画を見る 

共通テストの誘導はこういうことだったのね

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
7で割って3余り

9で割って2余り

11で割って1余る

最小の自然数を求めよ。
この動画を見る 

整数の性質が苦手な人のための動画【互いに素・a=ga'・ab=gl】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
整数の性質まとめ動画です
-----------------
1⃣
和が168で最大公約数が14、となる自然数のa、bの組をすべて求めよ。

2⃣
積が300で最小公倍数が60となる自然数の、bの組をすべて求めよ。

3⃣
積が288で最下公約数が6となる自然教a、bの組をすべて求めよ。なお、$a \lt b$とする。
この動画を見る 
PAGE TOP