【高校数学】 数Ⅱ-3 二項定理① - 質問解決D.B.(データベース)

【高校数学】  数Ⅱ-3  二項定理①

問題文全文(内容文):
◎二項定理を利用して展開しよう。

①$(a+b)^5$

②$(x+2)^6$

◎次の式の展開式における[ ]内に指定された項の係数は?

③$(2x+3)^6[x^2]$

④$(a-\displaystyle \frac{1}{2}b)^{10}[a^7 b^3]$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎二項定理を利用して展開しよう。

①$(a+b)^5$

②$(x+2)^6$

◎次の式の展開式における[ ]内に指定された項の係数は?

③$(2x+3)^6[x^2]$

④$(a-\displaystyle \frac{1}{2}b)^{10}[a^7 b^3]$
投稿日:2015.04.04

<関連動画>

福田のおもしろ数学073〜割り切れることを証明しよう

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
任意の自然数$n$に対して、$11^n$-$8^n$-$3^n$ が24で割り切れることを証明せよ。
この動画を見る 

福田のおもしろ数学111〜論証力をチェックしよう〜3変数の基本対称式の性質

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
実数$a$,$b$,$c$が$a$+$b$+$c$>0, $ab$+$bc$+$ca$>0, $abc$>0 を満たすとき、$a$>0, $b$>0, $c$>0 であることを証明せよ。
この動画を見る 

東大 漸化式 整式の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^{n+1}$を$x^2-x-1$で割った余りを$a_n x+b_n$とする.

(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
a_{n+1}=a_n+b_n \\
b_{n+1}=a_n
\end{array}
\right.
\end{eqnarray}$ を示せ.

(2)$a_n$と$b_n$は自然数で,互いに素であることを示せ.

東大過去問
この動画を見る 

【高校数学】  数Ⅱ-4  二項定理②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式の展開式における[ ]に指定された項の係数は?

①$(2a+b-c)^6 [a^2bc^3]$

②$(3x-2y+4z)^4 [xy^2z]$

③$ (x^2+x-2)^4[x^5]$

④$(x^2-3x+\displaystyle \frac{2}{x})^4 [x^2]$
この動画を見る 

大学入試問題#158 名古屋市立大学(2020) 2項展開の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ますただ
問題文全文(内容文):
$(x+2y)^2(x+2y+3z)^4$を展開した時
$x^4y^2,x^3y^2z$の係数をそれぞれ求めよ。

出典:2020年名古屋市立大学 入試問題
この動画を見る 
PAGE TOP