【数A】整数の性質:3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。 - 質問解決D.B.(データベース)

【数A】整数の性質:3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。

問題文全文(内容文):
3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
教材: #サクシード#サクシード数学Ⅰ・A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3つの数n、24、60の最大公約数が12、最小公倍数が1080となる整数nをすべて求めよ。
投稿日:2019.05.22

<関連動画>

5乗数を平方の和で

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2=5^5,a \lt b$とする.
自然数(a,b)を3組例示せよ.
この動画を見る 

【ガチ良問】素数が絡んだ整数問題の難問です【数学】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
pを素数,kを自然数とする。
$12p^{2}+12p+1=k^{2}$を満たすようなpの値を求めよ。
この動画を見る 

3つの素数の平方の和が素数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,q,rは相異なる素数$p^2+q^2+r^2$が素数となるための必要条件を2つ以上挙げてください.
この動画を見る 

明治学院 令和4年度 2022 入試問題100題解説85問目!

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bは整数とする。
$ab^2+2ab+a=50$
a+bの最小値は?

2022明治学院高等学校
この動画を見る 

開成高校 整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
開成高校過去問題
A,B(A<B)は自然数で最大公約数が$g(\neq1)$で最小公倍数がl
$A^2+B^2+g^2+l^2 = 1300$を満たすA,Bを求めよ
この動画を見る 
PAGE TOP