福田の数学〜慶應義塾大学2021年看護医療学部第2問(3)〜絶対値の付いた2次不等式の解 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年看護医療学部第2問(3)〜絶対値の付いた2次不等式の解

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (3)\ aを正の定数とし、不等式\\
|x^2-ax+3| \leqq 1\\
の解を実数の範囲で考える。\\
0 \lt a \lt \boxed{\ \ ナ\ \ }のとき、この不等式の解は存在しない。\\
\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }のとき、この不等式の解は\\
ある実数p,qによってp \leqq x \leqq qと表される。\\
a \gt \boxed{\ \ ニ\ \ }のときこの不等式の解は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (3)\ aを正の定数とし、不等式\\
|x^2-ax+3| \leqq 1\\
の解を実数の範囲で考える。\\
0 \lt a \lt \boxed{\ \ ナ\ \ }のとき、この不等式の解は存在しない。\\
\boxed{\ \ ナ\ \ } \leqq a \leqq \boxed{\ \ ニ\ \ }のとき、この不等式の解は\\
ある実数p,qによってp \leqq x \leqq qと表される。\\
a \gt \boxed{\ \ ニ\ \ }のときこの不等式の解は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
投稿日:2021.08.08

<関連動画>

【数学】イッパツ理解!データの分析!深く考えずに公式だけ覚えよう!【篠原好】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
イッパツ理解!深く考えずに公式だけ覚えよう!
「数学のデータの分析」についてお話しています。
この動画を見る 

2次関数 グラフと2次不等式4【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次関数$y=x^2+mx+2$が次の条件を満たすように、定数$m$の値の範囲を定めよ。
(1)この2次関数のグラフと$x$軸の正の部分が異なる2点で交わる。
(2)この2次関数のグラフと$x$軸の$x\lt -1$の部分が異なる2点で交わる。

放物線$y=x^2+2(m-1)x+5-m^2$が$x$軸の正の部分と負の部分のそれぞれと交わるように、定数$m$の値の範囲を定めよ。

2次方程式$x^2+2mx+2m+3=0$が次のような実数解をもつように、定数$m$の値の範囲を定めよ。
(1)異なる2つの負の解
(2)-4より大きい異なる2つの解
この動画を見る 

42を素因数分解の正答率  全国学力調査

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
42を素因数分解せよ

全国学力テスト中3
この動画を見る 

東京電機大 最大値・最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yを実数とする.
$x^2+2y^2+4y=0$を満たすとき,$2x-y$の最大値・最小値を求めよ.

東京電機大過去問
この動画を見る 

福田のわかった数学〜高校2年生059〜対称式と領域(1)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 対称式と領域(1)\\
実数x,\ yがx^2+y^2 \leqq 1を\\
満たしながら動くとき、\\
次の点の存在範囲を図示せよ。\\
(1)P(x+y,\ x-y)  (2)Q(x+y,\ xy)
\end{eqnarray}
この動画を見る 
PAGE TOP