大阪大 整数 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

大阪大 整数 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
'99大阪大学過去問題
自然数の組(a,b)でa以上b以下の整数の和が500となるものをすべて求めよ。
a<b
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'99大阪大学過去問題
自然数の組(a,b)でa以上b以下の整数の和が500となるものをすべて求めよ。
a<b
投稿日:2018.06.24

<関連動画>

【数A】整数の性質:高3 5月K塾共通テスト 数学IA第4問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)168を素因数分解すると 168=(ア)^(イ)×3×(ウ) である。
よって、168の正の約数の個数は(エオ)個であり、AB=168かつ3≦A<Bを満たすA,Bの組は、全部で(カ)個である。
(2)正の整数nは正の約数の個数が6個であり、正の約数の総和が168であるとする。このような正の整数nのうち、異なる2つの素因数を持つものを求めよう。
nは異なる素数p,qを用いて、n=p^(キ)・q と表せる。
このとき、nの正の約数の総和は[ク]であるから、p=(ケ) であり、n=(コサ) である。

[ク]の解答群
0: (p+p²)q
1: (1+p+p²)q
2: (p+p²)(1+q)
3: (1+p+p²)(1+q)
4: (p+p²+p³)q
5: (1+p+p²+p³)q
6: (p+p²+p³)(1+q)
7: (1+p+p²+p³)(1+q)

(3)正の整数mは正の約数の個数が12個であり、正の約数の総和が624であるとする。このような正の整数mのうち、異なる3つの素因数を持つものは m=(シスセ) である。
この動画を見る 

整数問題 基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2P^4-P^2+16$が平方数となるような素数$P$をすべて求めよ.
この動画を見る 

17東京都教員採用試験(数学1-1番 整数問題)

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#2次関数#式と証明#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣$m^2-mn+2n^2=28$
$m,n \in \mathbb{ N } (m>n)$を求めよ。
この動画を見る 

新潟大 指数・対数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
新潟大学過去問題
a,b,cは自然数
x,y,z,wは実数
$a^x=b^y=c^z=30^w$
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{w}$を満たすとき、a,b,cを求めよ。$(a \leqq b \leqq c )$
この動画を見る 

素数に関する整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^3+5$が素数となる素数xは何コ?

京都教育大学附属高等学校
この動画を見る 
PAGE TOP