福田の数学〜慶應義塾大学2022年薬学部第1問(2)〜高次方程式の解 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年薬学部第1問(2)〜高次方程式の解

問題文全文(内容文):
(2)a,bは実数とする。xの3次方程式$x^3+(a+4)x^2-3(a+4)x+b=0$
の実数解が$x=3$のみであるとき、aの値の範囲は$\boxed{\ \ エ\ \ }$である。

2022慶應義塾大学薬学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)a,bは実数とする。xの3次方程式$x^3+(a+4)x^2-3(a+4)x+b=0$
の実数解が$x=3$のみであるとき、aの値の範囲は$\boxed{\ \ エ\ \ }$である。

2022慶應義塾大学薬学部過去問
投稿日:2022.02.27

<関連動画>

【数Ⅱ】【複素数と方程式】2次方程式の解と判別式3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a、b、cは実数の定数とする。2次方程式ax²+bx+c=0は次の場合において、虚数解をもたないことを示せ。
(1) b=a+c
(2)a+c=0
(3)aとcが異符号

次の2次方程式の解の種類を判別せよ。ただし、a、bは実数の定数とする。
13x²-2(2a-3b)x+a²+b²=0
この動画を見る 

京都大 4次方程式 虚数解 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人京都大学

$0°\leqqθ\lt90°$ $x$の4次方程式
$\{x^2-2(cosθ)x-cosθ+1\}×$
$\{x^2+2(tanθ)x+3\}=0$
は虚数解を少なくとも1つ持つことを示せ
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(1)〜2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$(1)次の2次方程式において,1つの解が$x=\dfrac{3}{2}-i$であるとき,
実数$a,b$の値を求めよ.ただし,$i$は虚数単位とする.
$-x^2+ax+b=0$

2021中央大経済学部過去問
この動画を見る 

昭和大(医学部)複素数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ Z=\cos\dfrac{2}{5}\pi+i\sin\dfrac{2}{5}\pi,w=Z+Z^3$とするとき,
①$w+\bar{w}$
②$w・\bar{w}$
の値を求めよ.

昭和大(医)過去問
この動画を見る 

19神奈川県教員採用試験(数学:6番 剰余の定理)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
6⃣
P(x)をx+1,$(x-1)^2$で割った余りは、-3,-3x+6
P(x)を$(x+1)(x-1)^2$で割った余りを求めよ。
この動画を見る 
PAGE TOP