6乗根をはずせ! - 質問解決D.B.(データベース)

6乗根をはずせ!

問題文全文(内容文):
$6$乗根をはずせ.
$\sqrt[6]{99+70\sqrt2}$
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$6$乗根をはずせ.
$\sqrt[6]{99+70\sqrt2}$
投稿日:2021.07.30

<関連動画>

福田のわかった数学〜高校1年生057〜図形の計量(8)正四面体の内接球の半径

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 図形の計量(8)\\
1辺の長さがaの正四面体の各面に接する内接球の半径を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第1問(2)〜2次関数のグラフの位置から係数決定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (2)2次関数y=ax^2+bx+cの係数a,b,cは次の条件をともに満たすとする。\\
条件1.\ a,b,cは互いに異なる。\\
条件2.\ -3以上5以下の整数である。\\
この2次関数のグラフが、原点を通り、かつ、頂点が第1象限または第3象限\\
にあるようなa,b,cの組は全部で\ \boxed{\ \ イ\ \ }\ 組ある。
\end{eqnarray}

2022早稲田大学人間科学部過去問
この動画を見る 

【For you -20】  数Ⅰ-2次関数【平方完成】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎軸と頂点を求めよう!
①$y = x^2-2x+5$
②$y=2x^2+4x+7$
③$y = - 3x ^ 2 + 18x - 21$
④$y = - 2x ^ 2 + 6x$
⑤$y=\displaystyle \frac{1}{2}x^2+2x+1$
※図は動画内参照
この動画を見る 

2023高校入試数学解説50問目 手強い面積比 神奈川県 別解求む

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
AB:BC=1:2
△IBH:四角形HECF=?
*図は動画内参照

2023神奈川県
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)座標空間内の4点(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)を頂点と\\
する四面体をP、4点(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)を頂点\\
とする四面体をQとする。RをPとQの共通部分とする。Rを平面z=\frac{1}{3}で\\
切ったときの切り口の面積を求めよ。\hspace{145pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
この動画を見る 
PAGE TOP