数学「大学入試良問集」【18−10 定数分離と微分】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【18−10 定数分離と微分】を宇宙一わかりやすく

問題文全文(内容文):
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名城大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
投稿日:2021.07.12

<関連動画>

高専数学 微積II #19(1) 3次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\dfrac{1}{(1-x)^2}$の
$x=0$における3次近似式を求めよ.
この動画を見る 

横市(医)弘前大 因数分解・微分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分とその応用#微分法#色々な関数の導関数#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
因数分解せよ
$a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2$

弘前大学過去問題
関数y=f(x)において
$\displaystyle\lim_{x \to a}\frac{x^2f(x)-a^2f(a)}{x^2-a^2}$をa,f(a),f'(a)を用いて表せ。
この動画を見る 

弘前大 微分

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
関数$y=f(x)$において($x=a$で微分可能)$\displaystyle \lim_{x\to a}\dfrac{x^2 f(x)-a^2 f(a)}{x^2-a^2}$を$a,f(a),f`(a)$を用いて表せ.

弘前大過去問
この動画を見る 

大学入試問題#439「国立大学らしい綺麗な問題」 群馬大学(2015) #微分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{x} \sqrt{ 1+\{f'(t)\}^2 }dt=-e^{-x}+f(x)$
(1)
$f(x)$を求めよ。

(2)
$\displaystyle \int_{0}^{1} x\sqrt{ 1+\{f'(x)\}^2 }\ dx$

出典:2015年群馬大学 入試問題
この動画を見る 

福田の数学〜北海道大学2023年理系第3問〜指数方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 以下の問いに答えよ。ただし、eは自然対数の底を表す。
(1)kを実数の定数とし、f(x)=$xe^{-x}$とおく。方程式f(x)=kの異なる実数解の個数を求めよ。ただし、$\displaystyle\lim_{x \to \infty}f(x)$=0を用いてもよい。
(2)$xye^{-(x+y)}$=cを満たす正の実数x, yの組がただ1つ存在するときの実数cの値を求めよ。
(3)$xye^{-(x+y)}$=$\frac{3}{e^4}$を満たす正の実数x, yを考えるとき、yのとりうる値の最大値とそのときのxの値を求めよ。

2023北海道大学理系過去問
この動画を見る 
PAGE TOP