数学「大学入試良問集」【18−10 定数分離と微分】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【18−10 定数分離と微分】を宇宙一わかりやすく

問題文全文(内容文):
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#名城大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \frac{e^x}{x-1}$について、次の問いに答えよ。
(1)曲線$y=f(x)$のグラフの概形をかけ。
(2)定数$k$に対して、方程式$e^x=k(x-1)$の異なる実数解の個数を求めよ。
投稿日:2021.07.12

<関連動画>

数検1級2次過去問(6番 面積の最大値)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
6⃣ 円 : $x^2+y^2=1$上に図のように点Pをとる。
AP+PH
の最大値と、そのときの座標を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第4問〜カテナリーと円の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$ 
曲線$y=\dfrac{e^x+e^{-x}}{2} (x \gt 0)$を$C$で表す。$\textrm{Q}(X,Y)$を中心とする半径$r$の円が曲線$C$と、点$\textrm{P}(t,\dfrac{e^t+e^{-t}}{2})$ (ただし$t \gt 0$)において共通の接線をもち、さらに$X \lt t$であるとする。このとき$X$および$Y$を$t$の式で表すと
$X=\boxed{\ \ (あ)\ \ }, Y=\boxed{\ \ (い)\ \ }$
となる。$t$の関数$X(t),Y(t)$を$X(t)=\boxed{\ \ (あ)\ \ },Y(t)=\boxed{\ \ (い)\ \ }$により定義する。全ての$t \gt 0$に対して$X(t) \gt 0$となるための条件は、$r$が不等式$\boxed{\ \ (う)\ \ }$を満たすことである。$\boxed{\ \ (う)\ \ }$が成り立たないとき、関数$Y(t)$は$t=\boxed{\ \ (え)\ \ }$において最小値$\boxed{\ \ (お)\ \ }$をとる。また$\boxed{\ \ (う)\ \ }$が成り立つとき、$Y$を$X$の関数と考えて、$(\dfrac{dY}{dX})^2+1$を$Y$の式で表すと$(\dfrac{dY}{dX})^2+1=\boxed{\ \ (か)\ \ }$ となる。

2021慶應義塾大学医学部過去問
この動画を見る 

福田の数学〜東北大学2024年理系第5問〜関数の増減と方程式の整数解

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ $x$≧2 を満たす実数$x$に対し、
$f(x)$=$\displaystyle\frac{\log(2x-3)}{x}$
とおく。必要ならば、$\displaystyle\lim_{t \to \infty}\frac{\log t}{t}$=0 であること、および自然対数の底$e$が2<$e$<3 を満たすことを証明なしで用いてもよい。
(1)$f'(x)$=$\displaystyle\frac{g(x)}{x^2(2x-3)}$ とおくとき、関数$g(x)$ ($x$≧2)を求めよ。
(2)(1)で求めた関数$g(x)$に対し、$g(\alpha)$=0 を満たす2以上の実数$\alpha$がただ一つ存在することを示せ。
(3)関数$f(x)$ ($x$≧2)の増減と極限$\displaystyle\lim_{t \to \infty}f(x)$ を調べ、$y$=$f(x)$ ($x$≧2)のグラフの概形を$xy$平面上に描け。ただし(2)の$\alpha$を用いてよい。グラフの凹凸は調べなくてよい。
(4)2≦$m$<$n$ を満たす整数$m$,$n$の組($m$,$n$)に対して、等式
(*)$(2m-3)^n$=$(2n-3)^m$
が成り立つとする。このような組($m$,$n$)をすべて求めよ。
この動画を見る 

光文社新書「中学の知識でオイラーの公式がわかる」Vol.7積の微分の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
積の微分の公式証明解説動画です
この動画を見る 

あけましておめでとうございます

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の実数解を求めよ.
$2^x=x^2$

この動画を見る 
PAGE TOP