3つの整数の最大公約数!解けますか?【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

3つの整数の最大公約数!解けますか?【京都大学】【数学 入試問題】

問題文全文(内容文):
$n$を自然数とする。3つの整数$n^2+2,n^4+2,n^6+2$の最大公約数$A_n$を求めよ。

京都大過去問
チャプター:

00:04 問題文
00:32 ユークリッドの互除法の復習
01:13 本問題の解答・解説
07:56 次回の問題

単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を自然数とする。3つの整数$n^2+2,n^4+2,n^6+2$の最大公約数$A_n$を求めよ。

京都大過去問
投稿日:2022.10.22

<関連動画>

漸化式と整数の融合問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2$,$a_{n+1}=2^{n^2+2n-1}・a^2_n$
$a_n$の1の位が2になるのは$a_1$のみであることを示せ.

この動画を見る 

油断禁物!!整数問題  大阪星光学院

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-28x+160$が素数となる整数xを求めよ。
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^P+P^4+4$が素数となる素数Pをすべて求めよ
この動画を見る 

倍数の性質の利用 2021 新宿 B

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の条件を満たす4ケタの自然数A=?
・Aの千の位と一の位を入れ替えた数をB
・Aの十の位と一の位を入れ替えた数をC
・Aの千の位と百の位を入れ替えた数をD
・Aは3の倍数
・Aは1の位が素数
・Bは5の倍数
・Cは10の倍数
・D-A=3600

2021都立新宿高等学校
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第3問〜約数と倍数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mは3以上の奇数とし、mの全ての正の約数をa_1,a_2,\ldots,a_kと並べる。\\
ただし、a_1 \lt a_2 \lt \ldots \lt a_kとする。\\
以下の2つの条件(\textrm{i}),(\textrm{ii})を満たすmについて考える。\\
(\textrm{i})mは素数ではない。\\
(\textrm{ii})i \leqq j,1 \lt i \lt k ,1 \lt j \lt kを満たす全ての整数i,jについてa_j-a_i \leqq 3が\\
成り立つ。\\
このとき、次の問いに答えよ。\\
(1)kは3または4であることを示し、mをa_2を用いて表せ。\\
(2)k=3となるとき、全ての正の整数nについて(a_2n+1)^{a_2}-1は\\
mの倍数であることを示せ。
\end{eqnarray}

2022東京慈恵会医科大学医学部過去問
この動画を見る 
PAGE TOP