広島大学 整数問題 高校数学 大学入試 Japanese university entrance exam questions - 質問解決D.B.(データベース)

広島大学 整数問題 高校数学 大学入試 Japanese university entrance exam questions

問題文全文(内容文):
2010広島大学
4で割ると余りが1である自然数全体の集合をAとする。
(1)m,nを0以上の整数とする。
 m+nが偶数ならば$3^m7^n$はAに属し、m+nが奇数なら$3^m7^n$はAに属さないことを証明せよ。

(2)$3^{2m+1}7^{2n+1}$の正の約数のうちAに属する数の総和
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010広島大学
4で割ると余りが1である自然数全体の集合をAとする。
(1)m,nを0以上の整数とする。
 m+nが偶数ならば$3^m7^n$はAに属し、m+nが奇数なら$3^m7^n$はAに属さないことを証明せよ。

(2)$3^{2m+1}7^{2n+1}$の正の約数のうちAに属する数の総和
投稿日:2018.06.01

<関連動画>

福井県立大 不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#福井県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は正の実数
$\displaystyle \frac{abc}{(ab+1)(bc+1)(ca+1)} \leqq \displaystyle \frac{1}{8}$を証明せよ
等号式立条件も証明せよ

出典:福井県立大学 過去問
この動画を見る 

福田の数学〜北里大学2022年医学部第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 (1)iを虚数単位とし、$α= -2+2i,β=3+i$とする。
このとき、$α^5$の値は[ア]である。
zは等式 $2|z-α| = |z-β|$を満たす複素数全体を動くとする。
このとき、複素数平面上の点P(z) が描く図形は円であり、その中心を表す複素数は[イ]である。
また、 |z| の最大値は[ウ]である。

2022北里大学医学部過去問
この動画を見る 

整数問題 青山学院

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2+5y^2 = 21$を満たす
整数x,yの組をすべて求めよ(x>y)

青山学院高等部
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(2)〜位置ベクトルと面積比

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)三角形ABC内に点Pがあり、$3\overrightarrow{ PA }+5\ \overrightarrow{ PB }+7\ \overrightarrow{ PC }=\overrightarrow{ 0 }$のとき、
$\overrightarrow{ AP }=\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\overrightarrow{ AB }+\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケコ\ \ }}\overrightarrow{ AC }$
となるので、$\triangle PAB :\triangle PBC :\triangle PCA=\boxed{\ \ サ\ \ }$である。

$\boxed{\ \ サ\ \ }$の解答群
$⓪1:1:1  ①3:5:7  ②5:7:3  ③7:3:5  ④9:25:49$
$⑤25:49:9  ⑥49:9:25  ⑦\frac{1}{3}:\frac{1}{5}:\frac{1}{7}  ⑧\frac{1}{5}:\frac{1}{7}:\frac{1}{3}  ⑨\frac{1}{7}:\frac{1}{3}:\frac{1}{5}$

2021明治大学全統過去問
この動画を見る 

大学入試問題#235 自治医科大学(2014) 複素数

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\omega=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$のとき
$\omega^{20}+\omega^{19}+\omega^8+\omega^6+\omega^4+\omega^3$の値を求めよ。

出典:2012年自治医科大学 入試問題
この動画を見る 
PAGE TOP