問題文全文(内容文):
$a \gt 0,f(x)=ax^2,g(x)=x(x-4)^2$
(1)
$f(x)$と$g(x)$は相異なる3点で交わることを示せ
(2)
$f(x)$と$g(x)$で囲まれる2つの部分の面積が等しくなる$a$の値を求めよ
出典:名古屋大学 過去問
$a \gt 0,f(x)=ax^2,g(x)=x(x-4)^2$
(1)
$f(x)$と$g(x)$は相異なる3点で交わることを示せ
(2)
$f(x)$と$g(x)$で囲まれる2つの部分の面積が等しくなる$a$の値を求めよ
出典:名古屋大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#数学(高校生)#名古屋大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a \gt 0,f(x)=ax^2,g(x)=x(x-4)^2$
(1)
$f(x)$と$g(x)$は相異なる3点で交わることを示せ
(2)
$f(x)$と$g(x)$で囲まれる2つの部分の面積が等しくなる$a$の値を求めよ
出典:名古屋大学 過去問
$a \gt 0,f(x)=ax^2,g(x)=x(x-4)^2$
(1)
$f(x)$と$g(x)$は相異なる3点で交わることを示せ
(2)
$f(x)$と$g(x)$で囲まれる2つの部分の面積が等しくなる$a$の値を求めよ
出典:名古屋大学 過去問
投稿日:2019.05.25