問題文全文(内容文):
$a_{n+2}=4(a_{n+1}-a_n)$$(n=1,2,3,...)$
$a_1=2,a_2=16$
(1)$b_n=a_{n+1}-2a_n$$(n=1,2,3,...)$と置いて$b_n$を求めよ。
(2)$a_n$を求めよ。
2023明治大学全統過去問
$a_{n+2}=4(a_{n+1}-a_n)$$(n=1,2,3,...)$
$a_1=2,a_2=16$
(1)$b_n=a_{n+1}-2a_n$$(n=1,2,3,...)$と置いて$b_n$を求めよ。
(2)$a_n$を求めよ。
2023明治大学全統過去問
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$a_{n+2}=4(a_{n+1}-a_n)$$(n=1,2,3,...)$
$a_1=2,a_2=16$
(1)$b_n=a_{n+1}-2a_n$$(n=1,2,3,...)$と置いて$b_n$を求めよ。
(2)$a_n$を求めよ。
2023明治大学全統過去問
$a_{n+2}=4(a_{n+1}-a_n)$$(n=1,2,3,...)$
$a_1=2,a_2=16$
(1)$b_n=a_{n+1}-2a_n$$(n=1,2,3,...)$と置いて$b_n$を求めよ。
(2)$a_n$を求めよ。
2023明治大学全統過去問
投稿日:2023.10.30