法政大 微分積分の基本問題 - 質問解決D.B.(データベース)

法政大 微分積分の基本問題

問題文全文(内容文):
2023年 法政大過去問

(a>0)
$f(x)=-x^3+3a^2x-a^4$
は、極小値が$y_{0}$。
極大値が$y_{1}$、$y_{1}$を最大にするaの値はa=□。
このとき、$f(x)$と$y=y_{0}$とで囲まれる面積は?

単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#法政大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 法政大過去問

(a>0)
$f(x)=-x^3+3a^2x-a^4$
は、極小値が$y_{0}$。
極大値が$y_{1}$、$y_{1}$を最大にするaの値はa=□。
このとき、$f(x)$と$y=y_{0}$とで囲まれる面積は?

投稿日:2023.10.24

<関連動画>

N進法の3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
何進法か?
$x^3-12x^2+59x-93=0$が3つの整数解をもち,それらが等差数列となっている.
この動画を見る 

福田のおもしろ数学161〜複雑な指数方程式の解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
方程式$(4+\sqrt{15})^x-2(4-\sqrt{15})^x$=1 を解け。
この動画を見る 

指数・対数 × 整数問題!落としたくない問題です【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2^x+3^y=43 \\
\log_{ 2 } x-\log_{ 3 } y=1
\end{array}
\right.
\end{eqnarray}$を考える。

(1)この連立方程式を満たす自然数$x,y$の組を求めよ。
(2)この連立方程式を満たす正の実数$x,y$は、(1)で求めた自然数の組以外に存在しないことを示せ。

大阪大過去問
この動画を見る 

福田の数学〜剰余類と合同式を練習だ〜早稲田大学2023年商学部第3問〜7で割り切れる条件と91で割り切れる条件

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $n$を正の整数とする。次の設問に答えよ。
(1)$n^2$+$n$+1が7で割り切れるような$n$を小さい順に並べるとき、100番目の整数$n$を求めよ。
(2)$n^2$+$n$+1が91で割り切れるような$n$を小さい順に並べるとき、100番目の整数$n$を求めよ。
この動画を見る 

福田のおもしろ数学018〜1分以内に証明できたら天才〜不等式が常に成り立つ証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
どんなxに対しても次の方程式が成り立つことを証明せよ。
$x^{16}-x+1\gt 0$
この動画を見る 
PAGE TOP