2022年問題 - 質問解決D.B.(データベース)

2022年問題

問題文全文(内容文):
$(45+\sqrt{2022})^{2022}$の1の位を求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(45+\sqrt{2022})^{2022}$の1の位を求めよ.
投稿日:2021.11.17

<関連動画>

福田のおもしろ数学407〜a^3+b^3+c^3-3abcの取り得る最小の正の値

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

正の整数$a,b,c$に対して

$a^3+b^3+c^3-3abc$

が取り得る最小の正の値を求めよ。

またそのときの$a,b,c$の値は?
この動画を見る 

東大 2015 独自解法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ {}_{2015}\mathrm{C}_{m}$が偶数となる最小の$m$を求めよ.
$1\leqq m\leqq 2015$であり,$m$は自然数とする.

2015東大過去問
この動画を見る 

横浜市立(医)約数・倍数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$A,B$の最大公約数が$G$であり,最小公倍数が$L$である.
$L^2-G^2=72$であるとき,$(A,B)$をすべて求めよ.

2021横浜市立(医)
この動画を見る 

2021問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$2021^2+7・5^2・3^4=p^3qr$
$p,q,r$は2以上の自然数である.
この動画を見る 

福田のおもしろ数学310〜累乗で表された数の大小比較

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$$\left( \left( 3 \right)^3 \right)^4,\left( \left( 3 \right)^4 \right)^3,\left( \left( 3 \right)^4\right)^4,\left( \left( 4\right)^3 \right)^3,\left( \left( 4 \right)^3 \right)^4を昇順に直してください。ただし、a^{ b^c}=a^{ (b^c)}とする。$$
この動画を見る 
PAGE TOP