福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件

問題文全文(内容文):
${\Large\boxed{2}}$(2)方程式$x^2+x+1=0$の2つの解を$\alpha,\ \beta$とする。またbを実数として、
方程式$x^2+x+1=0$の2つの解を$\gamma,\ \delta$とする。複素数平面上で、4点$A(\alpha),$
$B(\beta),C(\gamma),D(\delta)$が同じ円上にあるとき、bの値は$±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$となる。

2021明治大学全統過去問
単元: #数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)方程式$x^2+x+1=0$の2つの解を$\alpha,\ \beta$とする。またbを実数として、
方程式$x^2+x+1=0$の2つの解を$\gamma,\ \delta$とする。複素数平面上で、4点$A(\alpha),$
$B(\beta),C(\gamma),D(\delta)$が同じ円上にあるとき、bの値は$±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$となる。

2021明治大学全統過去問
投稿日:2021.09.22

<関連動画>

二次方程式の解が1つ 灘高校2024

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xの二次方程式
$3(x+a)^2=(2a^2-1)(x+a)+x^2-2ax-3a^2$
が解を1つしかもたないようなaの値をすべて求めよ
灘高等学校2024
この動画を見る 

【高校数学】  数Ⅰ-65  2次不等式④

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の条件を満たすように、定数$a,b$の値をそれぞれ求めよう。
①2次不等式$x^2+ax+b\gt0$の解が$x \lt -2,1 \lt x$
②2次不等式$ax^2+9x+2b \geqq 0$の解が$4\leqq x \leqq 5$
この動画を見る 

【数Ⅰ】【2次関数】2次関数のグラフ応用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2次関数のグラフがx軸から切り取る線分の長さを求めよ。
 (1) y=x²-2x-8      (2) y=x²+6x+7

2次関数 y=x²-4x+2m のグラフとx軸の共有点の個数は,定数 m の値によってどのように変わるか。
この動画を見る 

【数Ⅰ】【2次関数】2次関数の決定 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすような放物線の方程式を求めよ。
 (1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
 (2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。

2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。

(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
この動画を見る 

4次方程式

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+5)^4+(x+7)^4=82$を解け
この動画を見る 
PAGE TOP