福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(2)〜2次方程式の解が同一円周上にある条件

問題文全文(内容文):
${\Large\boxed{2}}$(2)方程式$x^2+x+1=0$の2つの解を$\alpha,\ \beta$とする。またbを実数として、
方程式$x^2+x+1=0$の2つの解を$\gamma,\ \delta$とする。複素数平面上で、4点$A(\alpha),$
$B(\beta),C(\gamma),D(\delta)$が同じ円上にあるとき、bの値は$±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$となる。

2021明治大学全統過去問
単元: #数Ⅱ#2次関数#図形の性質#複素数平面#2次方程式と2次不等式#周角と円に内接する四角形・円と接線・接弦定理#複素数平面#数学(高校生)#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)方程式$x^2+x+1=0$の2つの解を$\alpha,\ \beta$とする。またbを実数として、
方程式$x^2+x+1=0$の2つの解を$\gamma,\ \delta$とする。複素数平面上で、4点$A(\alpha),$
$B(\beta),C(\gamma),D(\delta)$が同じ円上にあるとき、bの値は$±\frac{\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$となる。

2021明治大学全統過去問
投稿日:2021.09.22

<関連動画>

【数Ⅰ】【2次関数】2次関数の決定 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たすような放物線の方程式を求めよ。
 (1) 放物線 y=-3x²+x-1を平行移動した曲線で,頂点が点(-2,3)である。
 (2) 放物線 y=x²-3xを平行移動した曲線で,2点 (2,1),(4,5)を通る。

2つの放物線y=x²-3x, y=1/2x²+ax+bの頂点が一致するように,定数a,bの値を定めよ。

(1) 放物線y=x²-3x十4を平行移動した曲線で,点(2, 4)を通り,頂点が直線y=2x+1上にある放物線の方程式を求めよ。
(2) 放物線y=-2x²+5xを平行移動した曲線で,点(1, -3)を通り,頂点が放物線y=x²十4上にある放物線の方程式を求めよ。
この動画を見る 

【高校数学】  数Ⅰ-63  2次不等式②

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-4x+2 \leqq 0$
②$-2x^2-4x+5 \lt 0$
③$x^2-3+5\geqq-x-2$
この動画を見る 

「二次不等式の計算】【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の2次方程式を解け。
(1)$x^2-6x-72 \gt 0$
(2)$x^2-3x+1 \leqq 0$
(3)$-x^2+2x+1 \lt 0$
(4)$x^2+2x+5 \gt 0$
(5)$x^2+2x+5 \lt 0$
(6)$x^2+2x+5 \geqq 0$
(7)$x^2+2x+5 \leqq 0$
(8)$x^2-6x+9 \gt 0$
(9)$x^2-6x+9 \lt 0$
(10)$x^2-6x+9 \geqq 0$
(11)$x^2-6x+9 \leqq 0$


2次不等式$ax^2+bx+6 \lt 0$の解が次のようになるときの定数$a,b$の値を求めよ。
(1)$2 \lt x \lt 3$
(2)$x \lt -3,4 \lt x$
この動画を見る 

【数Ⅰ】【2次関数】2次不等式文章問題 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
立方体の縦を1cm短くし、横はそのまま、高さは2cm長くして直方体を作る。このとき、直方体の体積がもとの立方体の体積より大きくならないのは、もとの立方体の1辺の長さがどのような範囲にあるときか。

和が20である2つの整数の積が96以上になるとき、この2つの整数の組をすべて求めよ。
この動画を見る 

【高校数学】  数Ⅰ-67  2次不等式⑥

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$0 \leqq x \leqq2$の範囲において、常に$x^2-2ax+3a \gt 0$
が成り立つように、定数aの値の範囲を求めよう。
この動画を見る 
PAGE TOP