福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\ 三角形OABにおいて、2つのベクトル\overrightarrow{ OA }, \overrightarrow{ OB }は|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2,\\
\overrightarrow{ OA }・\overrightarrow{ OB }=2 を満たすとする。実数s,tが\\
s \geqq 0, t \geqq 0, 2s+t \leqq 1\\
を満たすとき、\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }
と表されるような点Pの\\
存在する範囲の面積は\ \boxed{\ \ カ\ \ }\ である。
\end{eqnarray}

2021立教大学経済学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\ 三角形OABにおいて、2つのベクトル\overrightarrow{ OA }, \overrightarrow{ OB }は|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2,\\
\overrightarrow{ OA }・\overrightarrow{ OB }=2 を満たすとする。実数s,tが\\
s \geqq 0, t \geqq 0, 2s+t \leqq 1\\
を満たすとき、\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }
と表されるような点Pの\\
存在する範囲の面積は\ \boxed{\ \ カ\ \ }\ である。
\end{eqnarray}

2021立教大学経済学部過去問
投稿日:2021.10.13

<関連動画>

【数B】ベクトル:直線と平面の交点

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
直線$\dfrac{x-2}{4}=\dfrac{y-1}{-1}=z-3$と平面$x-4y+z=0$の交点を求めよ
この動画を見る 

福田の数学〜3次方程式の解の存在範囲に関する問題〜東京大学2018年文系第3問〜関数の増減と方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
a>0とし、f(x)=$x^3-3a^2x$とおく。
( 1 )x$ \geqq 1$でf(x)が単調に増加するための aについての条件を求めよ。
( 2 )次の 2 条件を満たす点(a,b)の動きうる範囲を求め、座標平面上に図示せよ。
条件 1 :方程式f(x)=bは相異なる 3 実数解をもつ。
条件 2 :さらに方程式f(x)=bの解を$\alpha<\beta<\gamma$とすると、$\beta >1$ である。

2018東京大学文過去問
この動画を見る 

【わかりやすく】内分点の位置ベクトルの頻出問題(数学B・位置ベクトル)

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
三角形$ABC$において、辺$AB$の中点を$D$、辺$AC$を$3:2$に内分する点を$E$とし、線分$CD,BE$の交点を$P$とする。
$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AP }$を$\vec{ b },\vec{ c }$を用いて表せ。
この動画を見る 

【数C】中高一貫校問題集4 464:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習②

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #TK数学#TK数学問題集4#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABC(それぞれの位置ベクトルをa、b、cとする)について、以下の問いに答えよ。
(2)頂点Aと辺BCの中点を通る直線のベクトル方程式を求めよ
この動画を見る 

福田の1.5倍速演習〜合格する重要問題077〜東京大学2018年度理系第3問〜ベクトル方程式の表す点の存在範囲と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#微分法と積分法#ベクトルと平面図形、ベクトル方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
第3問
放物線y=$x^2$のうち-1≦x≦1を満たす部分をCとする。
座標平面上の原点Oと点A(1,0)を考える。k>0を実数とする。点PがC上を動き、点Qが線分OA上を動くとき
$\overrightarrow{OR}$=$\frac{1}{k}\overrightarrow{OP}$+$k\overrightarrow{OQ}$
を満たす点Rが動く領域の面積をS(k)とする。
S(k)および$\displaystyle\lim_{k \to +0}S(k)$, $\displaystyle\lim_{k \to \infty}S(k)$を求めよ。

2018東京大学理系過去問
この動画を見る 
PAGE TOP