【数学】中高一貫校問題集 数学3 数式・関数編 109 虚数を含む2次方程式の解法 - 質問解決D.B.(データベース)

【数学】中高一貫校問題集 数学3 数式・関数編 109 虚数を含む2次方程式の解法

問題文全文(内容文):
次の等式を満たす実数xの値を求めよ。
(1)(2+i)x²-(1+6i)x-2(3-4i)=0
(2)(3+2i)x²+(8+5i)x-3(1+i)=0
チャプター:

0:00 オープニング
0:06 問題
0:11 (1)解説
1:54 (2)解説

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす実数xの値を求めよ。
(1)(2+i)x²-(1+6i)x-2(3-4i)=0
(2)(3+2i)x²+(8+5i)x-3(1+i)=0
投稿日:2024.02.07

<関連動画>

これから数Ⅲを学ぶ人に贈る。複素数って何だよ?iって何?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
複素数についての解説動画です
この動画を見る 

早稲田大(商)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2+x+2)^{99}$
$=a_0+a_1x+a_2x^2+a_3x^3+…+a_{198}x^{198}$
$x^2+x+1=0$の1つの解を$\omega$とする

(2)
$f(\omega)$の値を求めよ

(2)
$S=\displaystyle \sum_{k=0}^{66} a_{3k}=a_0+a_3+a_6+…+a_{198}$

出典:1999年早稲田大学 商学部 過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$t$を実数とし、xの3次式f(x) を
$f(x) = x^3 + (1-2t)x^2+(4-2t)x+4$
により定める。以下の問いに答えよ。
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、$f(x) = 0$ が虚数の
解をもつようなtの範囲を求めよ。

実数tが (1) で求めた範囲にあるとき、方程式 $f(x) = 0$ の異なる2つの虚数解を
α, βとし、実数解をγとする。ただし、$α$の虚部は正、$β$の虚部は負とする。
以下、$α, β, γ$を複素数平面上の点とみなす。
(2) $α, β, γ$をtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点$α$
が描く図形を複素数平面上に図示せよ。

(3) 3点$α, β, γ$が一直線上にあるようなtの値を求めよ。

(4)3点$α, β, γ$が正三角形の頂点となるようなtの値を求めよ。

2022中央大学理工学部過去問
この動画を見る 

京都大 複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(1+i)^n+(1-i)^n \gt 10^{10}$をみたす最小の自然数$n$を求めよ.
$0.3 \lt \log_{10}2 \lt 0.302$

京大過去問
この動画を見る 

方程式を解く。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(123.4-12.34) \div x =1.234$
この動画を見る 
PAGE TOP