【超難問】2-1が難しすぎる世界 - 質問解決D.B.(データベース)

【超難問】2-1が難しすぎる世界

問題文全文(内容文):
深読みしすぎた2-1の計算紹介動画です
単元: #数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
深読みしすぎた2-1の計算紹介動画です
投稿日:2022.05.13

<関連動画>

【群数列ニガテな人は見て!!】群数列はこれさえ出来れば大丈夫!〔数学、高校数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
2から順に偶数を並べた数列で、 各郡に含まれる数が、1、3、5$\cdots$個と なるような数列を考える。
2|4,6,8|10,12,14,16,18|20,$\cdots$
このとき、第n郡の初項と末項を求めよ
この動画を見る 

福田の数学〜0と1の間に整数は存在しないなんて当たり前〜東京大学2018年文系第2問〜数列の増減と整数となる条件

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列$a_{ 1},a_{ 2 }$,・・・を$a_{ n }=\displaystyle \frac{{}_2n \mathrm{ C }_n}{n!}$(n=1,2,・・・)で定める。
(1)$a_{ 7 }$と1の大小を調べよ。
(2)$n \geqq 2$とする。$\displaystyle \frac{a_{ n }}{a_{ n-1}}<1$を満たすnの範囲を求めよ。
(3)$a_{ n }$が整数となる$n \geqq 1$を全て求めよ。

2018東京大学文過去問
この動画を見る 

福田の数学〜一橋大学2025文系第5問〜確率漸化式と条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$5$点$A,B,C,D$が

下図のように線分で結ばれている。

点$P_1,P_2,P_3,\cdots $を次のように定めていく。

$P_1$を$A$とする。

正の整数$n$に対して、$P_n$を端点とする線分を

ひとつ無作為にえらび、その線分の$P_n$とは

異なる端点$P_{n+1}$とする。

(1)$P_n$が$A$または$B$である確率$p_n$を求めよ。

(2)$P_n$が$A$または$B$であるとき、

$k=1,2,\cdots ,n$のいずれに対しても$P_k=E$とは

ならない条件付き確率$q_n$を求めよ。

図は動画内参照

$2025$年一橋大学文系過去問題
この動画を見る 

福田の数学〜慶應義塾大学2024年理工学部第1問(2)〜漸化式とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#関数と極限#数列の極限#関数の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)は実数全体で定義されており、$x\leqq 2$において
$\dfrac{2}{3}-\dfrac{1}{3}x\leqq f(x)\leqq 2-x$
を満たしているものとする。数列{$a_{ n }$}は漸化式
$a_{ n+1 }=a_{ n }+f(a_{ n })$
を満たしているものとする。
(i)$a_{ 1 } \leqq 2$ならば、すべての自然数nに対して、$a_{ 1 } \leqq a_{ n }\leqq2$となる事を証明しなさい。
(ii)$a_{ 1 } \leqq 2$ならば、$a_{ 1 }$の値によらず$\displaystyle \lim_{ n \to \infty } a_n = 2$となる事を証明しなさい。
この動画を見る 

【数B・Ⅲ】漸化式と極限:連立漸化式:数列{x[n]},{y[n]}をx[1]=y[1]=1, x[n+1]=(2/3)x[n]+(1/6)y[n], y[n+1]=(1/3)x[n]+(5/6)y…

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$x_n$},{$y_n$}を$x_1=y_1=1, x_{n+1}=\dfrac{2}{3}x_n+\dfrac{1}{6}y_n, y_{n+1}=\dfrac{1}{3}x_n+\dfrac{5}{6}y_n$で定めるとき、
(1)$x_{n+1}+αy_{n+1}=\beta(x_n+αy_n)$を満たす$\alpha,\beta$の組を2組求めよう。
(2)数列{$x_n$},{$y_n$}の一般項を求めよう。
(3)数列{$x_n$},{$y_n$}の極限を求めよう。
この動画を見る 
PAGE TOP