一橋大 確率 - 質問解決D.B.(データベース)

一橋大 確率

問題文全文(内容文):
サイコロを$n$回ふって
(1)$n$回目にはじめて積が$12$になる確率を求めよ.
(2)積が$12$になる確率を求めよ.

1996一橋大過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回ふって
(1)$n$回目にはじめて積が$12$になる確率を求めよ.
(2)積が$12$になる確率を求めよ.

1996一橋大過去問
投稿日:2020.10.18

<関連動画>

確率の求め方間違っていませんか?確率の前提の話 #shorts #確率 #数学

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率の求め方間違っていませんか?確率の前提の話を解説していきます.
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第4問〜復元抽出と非復元抽出の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 箱の中に1文字ずつ書かれたカードが10枚ある。そのうち5枚にはA、\\
3枚にはB、2枚にはCと書かれている。箱から1枚ずつ、3回カードを\\
取り出す試行を考える。\\
(1)カードを取り出すごとに箱に戻す場合、1回目と3回目に取り出したカード\\
の文字が一致する確率を求めよ。\\
(2)取り出したカードを箱に戻さない場合、1回目と3回目に取り出したカード\\
の文字が一致する確率を求めよ。\\
(3)取り出したカードを箱に戻さない場合、2回目に取り出したカードの文字が\\
Cであるとき、1回目と3回目に取り出したカードの文字が一致する\\
条件つき確率を求めよ。\\
\end{eqnarray}

2022北海道大学文系過去問
この動画を見る 

【数A】確率:東北大 2008年 大問4(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが次のルール (i), (i) に従って数直線上を移動するものとする。
(i)$1,2,3,4,5,6$の目が同じ割合で出るサイコロを振り, 出た目の数をkとする.
(ii)Pの座標aについて, $a\gt 0$ならば座標$a-k$の点へ移動し, $a\gt 0$ならば座標$a+k$の点へ移動する.
(iii)原点に移動したら終了し, そうでなければ(i) を繰り返す。

(2) Pの座標が$1,2,... 6$ のいずれかであるとき,
ちょうど n回サイコロを振って
原点で終了する確率を求めよ.
この動画を見る 

【数A】【場合の数】余事象の使い方 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大中小3個のさいころを投げるとき、次のような場合は何通りあるか
(1)目が全て異なる      (2)少なくとも2個が同じ目
(3)目の積が3の倍数      (4)目の和が奇数     

正四面体の1つの面を下にしておき、1つの辺を軸として3回転がす。2回目
以降、直前にあった場所を通らないようにするとき、次の数を求めよ
(1)転がし方の総数     (2)3回転がした後の正四面体の位置の総数
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第2問〜色々な条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 1個のさいころを繰り返し投げ、出た目の数により以下の(\textrm{a}),(\textrm{b})に従い得点を定める。\\
(\textrm{a})最初から10回連続して1の目が出た場合には、10回目で投げ終えて、\\
得点を0点とする。\\
(\textrm{b})mを0 \leqq m \leqq 9を満たす整数とする。最初からm回連続して1の目が出て\\
かつm+1回目に初めて1以外の目nが出た場合には、続けてさらにn回\\
投げたところで投げ終えて、1回目からm+n+1回目までに出た目の合計\\
を得点とする。ただし、最初から1以外の目が出た場合にはm=0とする。\\
\\
(1)得点が49点であるとする。このとき、n=\boxed{\ \ ア\ \ }となり、mの取り得る値の範囲\\
は\boxed{\ \ イ\ \ } \leqq m \leqq \boxed{\ \ ウ\ \ }であり、得点が49点となる確率は\frac{\boxed{\ \ エオ\ \ }}{6^{16}}である。また、得点が\\
49点で、さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ カキ\ \ }}{6^{16}}となる。さらに\\
得点が49点である条件のもとで、さいころを投げる回数が14回以下である\\
条件付き確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}となる。\\
\\
(2)さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ シ\ \ }}{6^{10}}となる。ゆえに、さいころを\\
投げる回数が14回以下である条件のもとで、得点が49点となる条件付き確率\\
は、k=\boxed{\ \ ス\ \ }とおいて\frac{1}{6^k(6^{10}-\boxed{\ \ セ\ \ })}となる。\\
\\
(3)得点が正の数で、かつ、さいころを投げる回数が14回以下である条件のもとで、\\
得点が49点となる条件付き確率はl=\boxed{\ \ ソ\ \ }とおいて\frac{1}{6^l(6^{10}-\boxed{\ \ タ\ \ })}となる。\\
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP