福田の数学〜北海道大学2023年文系第2問〜角の2等分線の位置ベクトル - 質問解決D.B.(データベース)

福田の数学〜北海道大学2023年文系第2問〜角の2等分線の位置ベクトル

問題文全文(内容文):
$\Large\boxed{2}$ 三角形OABは辺の長さがOA=3, OB=5, AB=7であるとする。また、$\angle$AOBの2等分線と直線ABとの交点をPとし、頂点Bにおける外角の2等分線と直線OPとの交点をQとする。
(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OP }$|の値を求めよ。
(2)$\overrightarrow{ OQ }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OQ }$|の値を求めよ。

2023北海道大学文系過去問
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 三角形OABは辺の長さがOA=3, OB=5, AB=7であるとする。また、$\angle$AOBの2等分線と直線ABとの交点をPとし、頂点Bにおける外角の2等分線と直線OPとの交点をQとする。
(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OP }$|の値を求めよ。
(2)$\overrightarrow{ OQ }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OQ }$|の値を求めよ。

2023北海道大学文系過去問
投稿日:2023.04.12

<関連動画>

【数B】ベクトル:ベクトルの基本④内積の基本的な考え方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本的な考え方に関して解説していきます.
この動画を見る 

【数C】平面ベクトル:位置ベクトル (1)AGをbとdを用いて表せ。(2)AGの延長と辺BCの交点をHとする。このとき、Hは辺BCをどのような比に内分するか。

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDにおいて、2辺AB,ADの中点をそれぞれE,Fとし、線分BFと線分CEの交点をGとする。AB=B,AD=dとするとき、次の問に答えよ。
(1)AGをbとdを用いて表せ。
(2)AGの延長と辺BCの交点をHとする。このとき、Hは辺BCをどのような比に内分するか。
この動画を見る 

【数C】ベクトルの基本⑥内積の基本計算2 成分を用いて計算する

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)
この動画を見る 

【数C】【平面上のベクトル】ベクトル方程式7 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上の異なる2つの定点O, Aと任意の点Pに対し,
$\overrightarrow{OA}=\vec{a}$, $\overrightarrow{OP}=\vec{p}$とする。

次のベクトル方程式はどのような図形を表すか。
(1) $|\vec{p}+2\vec{a}|=|\vec{p}-2\vec{a}|$
(2) $2\vec{a}\cdot\vec{p}=|\vec{a}||\vec{p}|$
この動画を見る 

【数C】【ベクトルの内積】0でない2つのベクトルa, bについて、|a+b|=|a-b|ならばa⊥bであることを示せ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):

$\vec{0}$でない2つのベクトル$\vec{a}, \vec{b}$について、
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$ならば
$\vec{a} \perp \vec{b}$であることを示せ。
この動画を見る 
PAGE TOP