開成高校 最小公倍数 - 質問解決D.B.(データベース)

開成高校 最小公倍数

問題文全文(内容文):
開成高校過去問題
最小公倍数が2010となる異なる2つの自然数の組み合わせの個数
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式
指導講師: 鈴木貫太郎
問題文全文(内容文):
開成高校過去問題
最小公倍数が2010となる異なる2つの自然数の組み合わせの個数
投稿日:2018.08.11

<関連動画>

一工夫必要な不定方程式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数(a,b)の組は何組あるか?

$3ab+4a-b=684$
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$は素数であり,$n$は自然数とする.これを解け.
$p^2+pq+q^2=n^2$
この動画を見る 

【数A】整数の性質:互いに素である自然数の個数を丁寧に解説します!

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1~135までの自然数で135と互いに素である自然数の個数は?
この動画を見る 

慈恵医大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$P$は素数、$a,b,c$自然数
$a$は素数

$a(ab-p^2)=C^2,b \leqq 2C$を満たす

(1)
$(a,b,c)$の組の個数を$P$を用いて表せ

(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ

出典:2017年東京慈恵会医科大学附属病院 過去問
この動画を見る 

自作の整数問題 効率よく絞り込め

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
k,nを自然数とする.
$49・3^n=k^2+9152$
自然数(k,n)の組をすべて求めよ.
この動画を見る 
PAGE TOP