2019東工大 栗崎先生に生徒貫太郎が教わる Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

2019東工大 栗崎先生に生徒貫太郎が教わる Mathematics Japanese university entrance exam

問題文全文(内容文):
$a=\displaystyle \frac{2^8}{3^4}$

整列$b_{k}=\displaystyle \frac{(k+1)^{k+1}}{a^kk!}$

(1)
$f(x)=(x+1)log(1+\displaystyle \frac{1}{x})$は$x \gt 0$で減少することを示せ

(2)
数列{$b_{k}$}の項の最大値$M$を分数で表し、$b_{k}=M$となる$k$をすべて求めよ


出典:2019年東京工業大学 過去問
単元: #大学入試過去問(数学)#数列#漸化式#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\displaystyle \frac{2^8}{3^4}$

整列$b_{k}=\displaystyle \frac{(k+1)^{k+1}}{a^kk!}$

(1)
$f(x)=(x+1)log(1+\displaystyle \frac{1}{x})$は$x \gt 0$で減少することを示せ

(2)
数列{$b_{k}$}の項の最大値$M$を分数で表し、$b_{k}=M$となる$k$をすべて求めよ


出典:2019年東京工業大学 過去問
投稿日:2019.02.27

<関連動画>

数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{n=1}^\infty \displaystyle \frac{n}{(n+1)!}$
この動画を見る 

佐賀大 数列のの不等式

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.

(1)$n!\geqq 2^{n-1}$を示せ.
(2)$\displaystyle \sum_{k=0}^n \dfrac{1}{k!}\lt 3$を示せ.

佐賀大過去問
この動画を見る 

富山県立大 数学的帰納法・二項展開・合同式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n+2・23^{n-1}$は常にある数の倍数であることを示せ

出典:富山県立大学 過去問
この動画を見る 

福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って
頂点をn回移動する。すなわち、この移動経路
$P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n$ (ただし$P_0=A$)
において、$P_0P_1,P_1P_2,\ldots,P_{n-1}P_n$は全て辺であるとする。
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点$P_n$がA,B,Cの
いずれかとなるものの総数$a_n$を求めよ。

2022京都大学文系過去問
この動画を見る 

大分大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
大分大学過去問題
$a_1=\frac{1}{2},a_{n+1}=a_n+\frac{2n+1}{2^{n+1}}$
一般項を求めよ。
この動画を見る 
PAGE TOP