【高校数学】合同式の例題~modを使いこなそう~ 5-6.5【数学A】 - 質問解決D.B.(データベース)

【高校数学】合同式の例題~modを使いこなそう~ 5-6.5【数学A】

問題文全文(内容文):
1⃣
$\alpha$は7で割れば3余る自然数、$\beta$は7で割れば4余る自然数である。
このとき、次の数を7で割った余りを求めよ。
(a) $\alpha + 2 \beta$
(b) $\alpha^3$
(c) $\beta⁵⁰$


2⃣
$2000²⁰⁰⁰$を12で割ったときの余りを求めよ。


3⃣
$49¹²³$の一の位の数字を求めよ。
チャプター:

00:00 はじまり

00:15問題

00:28 問題解説(1)

06:02 問題解説(2)

10:46 問題解説(3)

14:00 まとめ

14:26 問題と答え

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$\alpha$は7で割れば3余る自然数、$\beta$は7で割れば4余る自然数である。
このとき、次の数を7で割った余りを求めよ。
(a) $\alpha + 2 \beta$
(b) $\alpha^3$
(c) $\beta⁵⁰$


2⃣
$2000²⁰⁰⁰$を12で割ったときの余りを求めよ。


3⃣
$49¹²³$の一の位の数字を求めよ。
投稿日:2021.03.21

<関連動画>

福田の数学〜慶應義塾大学2022年看護医療学部第2問(3)〜平方数を3で割った余りに関する論証

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(3)次の2つの命題を証明せよ。
$(\textrm{i})$整数nが3の倍数でないならば、$n^2$を3で割った時の余りは1である。
$(\textrm{ii})$3つの整数$x,y,z$が等式$x^2+y^2=z^2$を満たすならば、
xとyの少なくとも一方は3の倍数である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

2つの自然数が互いに素ある確率。6/πの2乗

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#確率#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
任意の2つの自然数が互いに素である確率は
$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\cdots = \frac{\pi^2}{6}$
この動画を見る 

ちょいムズ整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n$をすべて求めよ.
$\vert 2^n+5^n-65 \vert$が平方数である.
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^a+m^2=n^4$
$a,m,n$は自然数で,$m,n$は奇数であることを示せ.
この動画を見る 

Σと合同式OnlineMathContest

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1\leqq S,t\leqq 2020$であり,$S$は整数,$t$は奇数である.
$\displaystyle \sum_{k=1}^S k^t$が$S$の倍数となる$(s,t)$の組数を求めよ.
この動画を見る 
PAGE TOP