頻出の整数問題!難関大学でよく出る重要な性質【一橋大学】【数学 入試問題】 - 質問解決D.B.(データベース)

頻出の整数問題!難関大学でよく出る重要な性質【一橋大学】【数学 入試問題】

問題文全文(内容文):
$ m $を整数とする。3次方程式$ x^3+mx^2+(m+8)x+1=0$は有理数の解$a$を持つ。
(1)$a$は整数であることを示せ。
(2)$m$の値を求めよ

一橋大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ m $を整数とする。3次方程式$ x^3+mx^2+(m+8)x+1=0$は有理数の解$a$を持つ。
(1)$a$は整数であることを示せ。
(2)$m$の値を求めよ

一橋大過去問
投稿日:2022.05.24

<関連動画>

2022関西医科 超基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x=\displaystyle \frac{6x^2+17x+10}{3x-2}$
(1)$f(x) \gt 0$を解け
(2)$f(n)$の値が自然数となる整数$n$
を求めよ。
2022年 関西医科過去問
この動画を見る 

整数問題 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^m-1032=n^2$,自然数$(m,n)$をすべて求めよ.
この動画を見る 

宮崎大 数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=2^n+1$
$a_n$のうち5で割り切れるものを小さい順に並べた数列を$b_k$とする.

(1)$b_k$を推定せよ.
(2)(1)の推定が全ての自然数$k$で成立することを証明せよ.

宮崎大過去問
この動画を見る 

福田の数学〜浜松医科大学2023年医学部第4問〜三角形と整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#整数の性質#三角形の辺の比(内分・外分・二等分線)#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $\triangle$ABCにおいて、BC=3, AC=$b$, AB=$c$, $\angle$ACB=$\theta$とする。$b$と$c$を素数とするとき、以下の問いに答えよ。
(1)$b$=3,$c$=5 のとき、$\cos\theta$の値を求めよ。
(2)$\cos\theta$<0 のとき、$c$=$b$+2 が成り立つことを示せ。
(3)$-\displaystyle\frac{5}{8}$<$\cos\theta$<$-\displaystyle\frac{7}{12}$ のとき、$b$と$c$の値の組をすべて求めよ。
この動画を見る 

青山学院大 2数の積の総和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$1,2…n$の中から異なる2つの数をとって積をつくるとき、それらの積の総和を求めよ
$(n \geqq 2)$

出典:2005年青山学院大学 過去問
この動画を見る 
PAGE TOP