頻出の整数問題!難関大学でよく出る重要な性質【一橋大学】【数学 入試問題】 - 質問解決D.B.(データベース)

頻出の整数問題!難関大学でよく出る重要な性質【一橋大学】【数学 入試問題】

問題文全文(内容文):
$ m $を整数とする。3次方程式$ x^3+mx^2+(m+8)x+1=0$は有理数の解$a$を持つ。
(1)$a$は整数であることを示せ。
(2)$m$の値を求めよ

一橋大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ m $を整数とする。3次方程式$ x^3+mx^2+(m+8)x+1=0$は有理数の解$a$を持つ。
(1)$a$は整数であることを示せ。
(2)$m$の値を求めよ

一橋大過去問
投稿日:2022.05.24

<関連動画>

整数問題(フェルマーの小定理)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^n+5^n-1$が$7$の倍数となる自然数$n$の条件を求めよ.
この動画を見る 

徳島大(医)整数問題 約数の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$自然数
$n^2(n^2+8)$の正の約数が10個
$n$をすべて求めよ。

出典:2019年徳島大学医学部 過去問
この動画を見る 

素数問題の良問だよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qは素数である.
$p^3-q^5=(p+q)^2$を満たす(p,q)の組をすべて求めよ.
この動画を見る 

素因数分解せよ!prime factorization

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$これを素因数分解せよ.
160401$
この動画を見る 

整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$(4n-1)^{2n+1}+(4n+1)^{2n-1}$は$32n^2$で割り切れることを示せ.
この動画を見る 
PAGE TOP