福田のおもしろ数学170〜タンジェントに関する複雑な三角方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学170〜タンジェントに関する複雑な三角方程式

問題文全文(内容文):
$\tan x$=$\tan(x+10°)\tan(x+20°)\tan(x+30°)$ を満たす$x$を全て求めなさい。
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\tan x$=$\tan(x+10°)\tan(x+20°)\tan(x+30°)$ を満たす$x$を全て求めなさい。
投稿日:2024.06.20

<関連動画>

本当に紙を42回折ると月に行けるのか?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
紙を42回折ったときの紙の厚さなど 解説動画です
この動画を見る 

福田の数学〜明治大学2022年理工学部第2問〜平面図形の計量

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#英語(高校生)#平面図形#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#明治大学#数学(高校生)#明治大学
指導講師: 福田次郎
問題文全文(内容文):
平面上の長さ3の線分AB上に、$AP=t\ (0 \lt t \lt 3)$を満たす点Pをとる。
中心を$O$とする半径1の円Oが、線分ABと点Pで接しているとする。
$\alpha=\angle OAB,\ \beta=\angle OBA$
とおく。$\tan\alpha,\ \tan\beta,\tan(\alpha+\beta)$を$t$で表すと、
$\tan\alpha=\boxed{あ},\ \tan\beta=\boxed{い},$
$\ \tan(\alpha+\beta)=\boxed{う}$である。
$0 \lt \alpha+\beta \lt \frac{\pi}{2}$であるようなtの範囲は$\boxed{え}$である。
tは$\boxed{え}$の範囲にあるとする。点$A,\ B$から円Oに引いた接線の接点のうち、
Pでないものをそれぞれ$Q,\ R$とすると、$\angle QAB+\angle RBA \lt \pi$である。
したがって、線分AQのQの方への延長と線分BRのRの方への延長は交わり、
その交点をCとすると、円Oは三角形ABCの内接円である。
このとき、線分CQの長さをtで表すと$\ \boxed{お}$である。
また、$t$が$\boxed{え}$の範囲を動くとき、三角形ABCの面積Sの取り得る値の範囲は$\boxed{か}$である。

2022明治大学理工学部過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} [2]二つの関数f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2} について考える。\\
(1)f(0)=\boxed{\ \ セ\ \ }, g(0)=\boxed{\ \ ソ\ \ }\ である。また、f(x)は\\
相加平均と相乗平均の関係から、x=\boxed{\ \ タ\ \ }で最小値\boxed{\ \ チ\ \ }をとる。\\
g(x)=-2となるxの値は\log_2(\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ })である。\\
\\
(2)次の①~④は、xにどのような値を代入しても常に成り立つ。\\
f(-x)=\boxed{\ \ ト\ \ } \ldots①  g(-x)=\boxed{\ \ ナ\ \ } \ldots②\\
\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{\ \ ニ\ \ } \ldots③  
g(2x)=\boxed{\ \ ヌ\ \ }\ f(x)g(x) \ldots④\\
\\
\boxed{\ \ ト\ \ }、\boxed{\ \ ナ\ \ }の解答群\\
⓪f(x)    ①-f(x)    ②g(x)    ③-g(x)
\\
\\
(3)花子:①~④は三角関数の性質に似ているね。\\
太郎:三角関数の加法定理に類似した式(\textrm{A})~(\textrm{D})を考えてみたけど、常に\\
成り立つ式はあるだろうか。\\
花子:成り立たない式を見つけるために、式(\textrm{A})~(\textrm{D})の\betaに\\
何か具体的な値を代入して調べてみたら?\\
\\
太郎さんが考えた式\\
f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A}) 
f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})\\
f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C}) 
f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})\\
\\
(1),(2)で示されたことのいくつかを利用すると、式(\textrm{A})~(\textrm{D})のうち、\\
\boxed{\ \ ネ\ \ }以外の3つは成り立たないことが分かる。\boxed{\ \ ネ\ \ }は左辺と右辺を\\
それぞれ計算することによって成り立つことが確かめられる。\\
\\
\boxed{\ \ ネ\ \ }の解答群\\
⓪(\textrm{A})   ①(\textrm{B})   ②(\textrm{C})   ③(\textrm{D})
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

福田の数学〜九州大学2023年文系第1問〜放物線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ aを0<a<9 を満たす実数とする。xy平面上の曲線Cと直線lを、次のように定める。
C:$y$=|($x$-3)($x$+3)|, l:$y$=$a$
曲線Cと直線lで囲まれる図形のうち、$y$≧$a$の領域にある部分の面積を$S_1$、$y$≦$a$の領域にある部分の面積を$S_2$とする。$S_1$=$S_2$となる$a$の値を求めよ。

2023九州大学文系過去問
この動画を見る 

【別解あり】2023年京大の三角関数!円に内接する多角形は頻出です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$\cos 2θと\cos 3θを\cos θ$の式として表せ。

(2)半径1の円に内接する正五角形の一辺の長さが1.15より大きいか否かを理由をつけて判定せよ。

京都大過去問
この動画を見る 
PAGE TOP