福田の一夜漬け数学〜数列・シグマ記号(2)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・シグマ記号(2)〜高校2年生

問題文全文(内容文):
次の和を求めよ。
(1)$2^2+4^2+6^2+8^2+\cdots+(2n)^2$
(2)$1・2・3+2・3・5$$+3・4・7+$$4・5・9+$$\cdots+n(n+1)(2n+1)$


次の数列の初項から第n項までの和を求めよ。
(1)$2, 2+4, 2+4+6,$$ 2+4+6+8,\cdots$
(2)$1^2+1・2+2^2,$$ 2^2+2・3+3^2,$$ 3^2+3・4+4^2,\cdots$
(3)$1, 11, 111, 1111,\cdots$


次の数列の和を求めよ。
(1)$1・n, 3(n-1), 5(n-2),$$\cdots$$, (2n-3)・2$$, (2n-1)・1$
(2)$1^2・n, 2^2(n-1), 3^2(n-2),$$\cdots$$, (n-1)^2・2$$, n^2・1$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の和を求めよ。
(1)$2^2+4^2+6^2+8^2+\cdots+(2n)^2$
(2)$1・2・3+2・3・5$$+3・4・7+$$4・5・9+$$\cdots+n(n+1)(2n+1)$


次の数列の初項から第n項までの和を求めよ。
(1)$2, 2+4, 2+4+6,$$ 2+4+6+8,\cdots$
(2)$1^2+1・2+2^2,$$ 2^2+2・3+3^2,$$ 3^2+3・4+4^2,\cdots$
(3)$1, 11, 111, 1111,\cdots$


次の数列の和を求めよ。
(1)$1・n, 3(n-1), 5(n-2),$$\cdots$$, (2n-3)・2$$, (2n-1)・1$
(2)$1^2・n, 2^2(n-1), 3^2(n-2),$$\cdots$$, (n-1)^2・2$$, n^2・1$
投稿日:2018.04.27

<関連動画>

関西学院大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$自然数、$a_1=2-\displaystyle \frac{1}{2^p}$
$a_{n+1}=2a_n-n$

一般項を求めよ

{$a_n$}の最大値とそれを与える$n$を求めよ

出典:2005年関西学院大学 過去問
この動画を見る 

【高校数学】 数B-95 数学的帰納法①

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$1^2+2^2+3^2+・・・+n^2=\dfrac{1}{6}n(n+1)(2n+1)$を
数学的帰納法によって証明しよう.
この動画を見る 

福田の一夜漬け数学〜確率漸化式(3)〜東京大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 片面を白色に、もう片面を黒色に塗った正方形の板が3枚ある。
この3枚の板を机の上に並べ、次の操作を繰り返し行う。
サイコロをふり、1か2の目が出たら左端の板を裏返し、3か4が出たら中央の
板を裏返し、5か6が出たら右端の板を裏返す。
(1)「白白白」から始めて、3回の操作の結果「黒白白」となる確率を求めよ。
(2)「白白白」から始めて、$n$回の操作の結果「黒白白」または「白黒白」または
「白白黒」となる確率を$p_n$とする。$p_{2k+1}$を求めよ。($k$は自然数とする)
この動画を見る 

2023久留米大(医)確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
無作為に1個取り出して戻すを繰り返す.
n回取り出したときの数の合計が3の倍数になる確率$P_{n}$を求めよ.

久留米大(医)過去問
この動画を見る 

関西医科大 三項間漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=0,a_2=1$
$a_{n+2}=10a_{n+1}+51a_{n}$とする。

①一般項$a_n$を求めよ。
②$a_n$を10で割ったあまりを$b_n$とする。
$\displaystyle \sum_{k=1}^{2m} b_k$を求めよ。

関西医科大過去問
この動画を見る 
PAGE TOP