福田の数学〜慶應義塾大学2025経済学部第1問(2)〜2変数の不等式と領域 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2025経済学部第1問(2)〜2変数の不等式と領域

問題文全文(内容文):

$\boxed{1}$

(2)不等式

$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$

を満たす整数$m,n$を考える。

$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が

不等式①を満たすための必要十分条件は

$\boxed{セ} \leqq m \leqq \boxed{ソ}$

である。

同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、

$m$と$n$が①を満たすための必要十分条件は

$\boxed{タチ}\leqq n \leqq \boxed{ツ}$

である。よって、$m$と$n$が①を満たすとき、

$(m-n)(m+n-6)$の最大値は、

$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$

より$\boxed{ナニ}$である。

$2025$年慶應義塾大学経済学部過去問題
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)不等式

$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$

を満たす整数$m,n$を考える。

$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が

不等式①を満たすための必要十分条件は

$\boxed{セ} \leqq m \leqq \boxed{ソ}$

である。

同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、

$m$と$n$が①を満たすための必要十分条件は

$\boxed{タチ}\leqq n \leqq \boxed{ツ}$

である。よって、$m$と$n$が①を満たすとき、

$(m-n)(m+n-6)$の最大値は、

$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$

より$\boxed{ナニ}$である。

$2025$年慶應義塾大学経済学部過去問題
投稿日:2025.05.20

<関連動画>

福田の一夜漬け数学〜図形と方程式〜2点間の距離の公式(2)高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形の性質#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\triangle ABC$において、辺$BC$の中点を$M$とする。次を証明せよ。
$AB^2+AC^2=2(AM^2+BM^2)$

${\Large\boxed{2}}$ $\triangle ABC$の重心をGとするとき、次を証明せよ。
$AB^2+AC^2=BG^2+$$CG^2+$$4AG^2$
(注意)$A(x_1,y_1),B(x_2,y_2),C(x_3,y_3)$のとき$\triangle ABC$の重心の座標は
$\left(\displaystyle \frac{x_1+x_2+x_3}{3},\displaystyle \frac{y_1+y_2+y_3}{3}\right)$
この動画を見る 

【数Ⅱ】【微分法と積分法】極大極小の条件2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)=x⁴+4x³+2ax²が極大値と極小値を持つように,定数aの値の範囲を定めよ。
この動画を見る 

大学入試問題#903「記述の仕方が問われる」 #信州大学後期(2024)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ますただ
問題文全文(内容文):
$a_1=3$とする
$\displaystyle \frac{1}{4}a_n+\displaystyle \frac{3}{2} \lt a_n+1 \lt \displaystyle \frac{1}{3}a_n+\displaystyle \frac{4}{3}$
を満たすとき、$\displaystyle \lim_{ n \to \infty } a_n$を求めよ

出典:2024年信州大学後期
この動画を見る 

【数Ⅱ】【式と証明】等式の証明6 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1) $x+y+z=-1 ,xy+yz+zx+xyz=0$ ならば、$x ,y ,z$ のうち少なくとも1つは$-1$であることを示せ。
(2) $(bc+ca+ab)(a+b+c)=abc$ならば、$a ,b ,c$ のうちどれか2つの和は$0$であることを示せ。
この動画を見る 

【数Ⅱ】指数関数のグラフと不等式【底が1より大きいか小さいかで全然違うグラフになる!】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
指数関数のグラフと不等式に関して解説していきます.
この動画を見る 
PAGE TOP