問題文全文(内容文):
$\boxed{1}$
(2)不等式
$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$
を満たす整数$m,n$を考える。
$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が
不等式①を満たすための必要十分条件は
$\boxed{セ} \leqq m \leqq \boxed{ソ}$
である。
同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、
$m$と$n$が①を満たすための必要十分条件は
$\boxed{タチ}\leqq n \leqq \boxed{ツ}$
である。よって、$m$と$n$が①を満たすとき、
$(m-n)(m+n-6)$の最大値は、
$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$
より$\boxed{ナニ}$である。
$2025$年慶應義塾大学経済学部過去問題
$\boxed{1}$
(2)不等式
$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$
を満たす整数$m,n$を考える。
$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が
不等式①を満たすための必要十分条件は
$\boxed{セ} \leqq m \leqq \boxed{ソ}$
である。
同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、
$m$と$n$が①を満たすための必要十分条件は
$\boxed{タチ}\leqq n \leqq \boxed{ツ}$
である。よって、$m$と$n$が①を満たすとき、
$(m-n)(m+n-6)$の最大値は、
$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$
より$\boxed{ナニ}$である。
$2025$年慶應義塾大学経済学部過去問題
単元:
#数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{1}$
(2)不等式
$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$
を満たす整数$m,n$を考える。
$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が
不等式①を満たすための必要十分条件は
$\boxed{セ} \leqq m \leqq \boxed{ソ}$
である。
同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、
$m$と$n$が①を満たすための必要十分条件は
$\boxed{タチ}\leqq n \leqq \boxed{ツ}$
である。よって、$m$と$n$が①を満たすとき、
$(m-n)(m+n-6)$の最大値は、
$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$
より$\boxed{ナニ}$である。
$2025$年慶應義塾大学経済学部過去問題
$\boxed{1}$
(2)不等式
$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$
を満たす整数$m,n$を考える。
$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が
不等式①を満たすための必要十分条件は
$\boxed{セ} \leqq m \leqq \boxed{ソ}$
である。
同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、
$m$と$n$が①を満たすための必要十分条件は
$\boxed{タチ}\leqq n \leqq \boxed{ツ}$
である。よって、$m$と$n$が①を満たすとき、
$(m-n)(m+n-6)$の最大値は、
$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$
より$\boxed{ナニ}$である。
$2025$年慶應義塾大学経済学部過去問題
投稿日:2025.05.20





