福田の数学〜東北大学2023年理系第3問〜漸化式と数列の和 - 質問解決D.B.(データベース)

福田の数学〜東北大学2023年理系第3問〜漸化式と数列の和

問題文全文(内容文):
$\Large\boxed{3}$ sを実数とし、数列$\left\{a_n\right\}$を
$a_1$=s, (n+2)$a_{n+1}$=n$a_n$+2 (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)$a_n$をnとsを用いて表せ。
(2)ある正の整数$m$に対して、$\displaystyle\sum_{n=1}^ma_n$=0が成り立つとする。sをmを用いて表せ。

2023東北大学理系過去問
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ sを実数とし、数列$\left\{a_n\right\}$を
$a_1$=s, (n+2)$a_{n+1}$=n$a_n$+2 (n=1,2,3,...)
で定める。以下の問いに答えよ。
(1)$a_n$をnとsを用いて表せ。
(2)ある正の整数$m$に対して、$\displaystyle\sum_{n=1}^ma_n$=0が成り立つとする。sをmを用いて表せ。

2023東北大学理系過去問
投稿日:2023.05.19

<関連動画>

高知大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=0$
$n^2a_{n+1}=(n+1)^2a_n+2n+1$

$a_n$を求めよ

出典:1995年高知大学 過去問
この動画を見る 

【数B】【数列】漸化式8 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
表の出る確率が1/3である硬貨を投げて、
表が出たら点数を1点増やし、
裏が出たら点数はそのままとするゲームについて考える。
0点から始めて、硬貨を$n$回投げたときの点数が偶数である確率$P_n$を求めよ。
ただし、0は偶数と考える。
この動画を見る 

【数B】【数列】漸化式7 ※問題文は概要欄

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のように、1辺の長さ1の正方形の各辺を2:1に内分する
4点を結んでできる正方形の面積を$S_1$とする。
同様に、新しくできた正方形の各辺を2:1に内分する
4点を結んでできる正方形の面積を$S_2$とする。
以下同様に、この操作を$n$回行った後にできる
正方形の面積を$S_n$とする。

(1) $S_n$をnの式で表せ。
(2) $\displaystyle \sum_{k=1}^n S_n$を求めよ。
この動画を見る 

千葉大 漸化式 良問再投稿

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=\displaystyle \frac{(1+\sqrt{ 3 })^n+(1-\sqrt{ 3 })^n}{4}(n \geqq 2)$

以下を求めよ
$a_n$は整数
$a_n$は3で割ると余りが2

出典:2013年千葉大学 過去問
この動画を見る 

頑張って解いてほしい自作問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{111・・・・・・11}^{100桁}$
$243$で割った余りを求めよ.
この動画を見る 
PAGE TOP