福田のわかった数学〜高校3年生理系014〜極限(14)級数と区分求積 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系014〜極限(14)級数と区分求積

問題文全文(内容文):
数学$\textrm{III}$ 極限(14)

$\displaystyle \lim_{n \to \infty}(\dfrac{1^2+2^2+\cdots+n^2}{1+2+\cdots+n}\times$$ \dfrac{1^5+2^5+\cdots+n^5}{1^6+2^6+\cdots+n^6})$
を求めよ。 
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(14)

$\displaystyle \lim_{n \to \infty}(\dfrac{1^2+2^2+\cdots+n^2}{1+2+\cdots+n}\times$$ \dfrac{1^5+2^5+\cdots+n^5}{1^6+2^6+\cdots+n^6})$
を求めよ。 
投稿日:2021.05.17

<関連動画>

関西医科大 分数不等式 整数問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022関西医科大学過去問題
$f(x)=\frac{6x^2+17x+10}{3x-2}$
①$f(x)>0$をみたすxの範囲
②f(n)が正の整数となる整数n
この動画を見る 

福田の数学〜千葉大学2024年理系第7問〜3次方程式の解の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$ を正の整数とする。 $x$ の関数 $f(x) $$= x^3$$-2nx^2$$+(2n-3)x$$+1$ について、以下の問いに答えよ。
$(1)$ $\alpha$ を $f(x)=0$ の$1$ つの解とする。 $\displaystyle f(\frac{1}{1-\alpha})$ の値を求めよ。
$(2)$ 方程式 $f(x) = 0$ は異なる $3$ つの実数解をもつことを示せ。
$(3)$ 方程式 $f(x) = 0$ の解で $2$ 番目に大きいものを $\beta_n$ とする。極限 $\displaystyle \lim_{ n \to \infty } \beta_n$ を求めよ。
この動画を見る 

福田の数学〜東北大学2023年理系第2問〜三角方程式の解の個数とその極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 関数f(x)=$\sin3x$+$\sin x$について、以下の問いに答えよ。
(1)f(x)=0 を満たす正の実数$x$のうち、最小のものを求めよ。
(2)正の整数$m$に対して、f(x)=0を満たす正の実数$x$のうち、$m$以下のものの個数を$p(m)$とする。極限値$\displaystyle\lim_{m \to \infty}\frac{p(m)}{m}$ を求めよ。

2023東北大学理系過去問
この動画を見る 

中学からの極限(徹底編)~全国入試問題解法 #shorts #数学 #高校入試 #動体視力

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \displaystyle \lim_{(x,y)\to (0,0)}\dfrac{x^2-y^2}{x^2+y^2}$
次の関数の極限を調べよ.
この動画を見る 

【数Ⅲ】【関数と極限】第2項が3である無限等比級数が収束し、その和が-4であるとき、初項と公比を求めよ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
第2項が3である無限等比級数が収束し、その和が-4であるとき、初項と公比を求めよ。
この動画を見る 
PAGE TOP