【高校数学】数Ⅲ-117 関数の極値② - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-117 関数の極値②

問題文全文(内容文):
数Ⅲ(関数の極値➁)
Q.次の関数の極値を求めなさい

①$f(x)=x\sqrt{1-x^2}$

➁$f(x)=|x|\sqrt{x+3}$
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(関数の極値➁)
Q.次の関数の極値を求めなさい

①$f(x)=x\sqrt{1-x^2}$

➁$f(x)=|x|\sqrt{x+3}$
投稿日:2018.11.10

<関連動画>

【意外と解けない?!?!】$y=3^{2x}$を微分せよ。

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$y=3^{2x}$を微分せよ。
この動画を見る 

数学「大学入試良問集」【18−6 平均値の定理と不等式の証明】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#姫路工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の各問いに答えよ。
(1)
関数$f(x)=x\ log\ x$を微分せよ。

(2)
次の等式を満たす$c$が$x \lt c \lt x+1$の範囲に存在することを示せ。
$(x+1)log(x+1)-x\ log\ x=1+log\ c$

(3)
$x \gt 0$のとき、次の不等式が成り立つことを示せ。
ただし$e$は自然対数の底である。
$\left[ 1+\dfrac{ 1 }{ x } \right]^x \lt e$
この動画を見る 

【数Ⅲ】微分法:伝説の静岡大学のグラフの問題を紹介!!どんなグラフになるか予想しよう!(概要欄にネタバレあり)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#静岡大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数$f(x),g(x)$を $f(x)=x^4-x^2+6(\vert x\vert\leqq 1),\dfrac{12}{\vert x\vert +1}(\vert x\vert\gt 1)$,$g(x)=\dfrac{1}{2}\cos2\pi x+\dfrac{7}{2}(\vert x\vert\leqq 2)$ で定義する。このとき次の問いに答えよ。 
$f(x),g(x)$の増減を調べ、2曲線$C_1:y=f(x),C_2:y=g(x)$のグラフの概形を同じ座標平面上にかけ。
この動画を見る 

練習問題46 岡山大学 対数の性質を利用した不等式の証明 数検準1級 教員採用試験

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#指数関数と対数関数#対数関数#微分とその応用#学校別大学入試過去問解説(数学)#その他#数学検定#数学検定準1級#数学(高校生)#岡山大学#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
実数$a,b,$は
$0 \lt a \lt b$をみたしているとき
$(b+1)^a \lt (a+1)^b$が成り立つことを表せ。

出典:岡山大学
この動画を見る 

神戸大 3次関数の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#式と証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$t\gt 0$とし,
$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$
$-1\leqq x \leqq 2$ における最大値と最小値を求めよ.

神戸大過去問
この動画を見る 
PAGE TOP