福田の数学〜立教大学2022年理学部第1問(3)〜垂線の足の位置ベクトル - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年理学部第1問(3)〜垂線の足の位置ベクトル

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(3)\ 三角形ABCにおいて、AB=5,\ AC=6、角Aの大きさは\frac{\pi}{3}であるとする。\\
Aから辺BCに垂線AHを下ろす。このときBH:CH=\boxed{\ \ ウ\ \ }:\boxed{\ \ エ\ \ }\ である。\\
\end{eqnarray}

2022立教大学理学部過去問
単元: #数A#大学入試過去問(数学)#図形の性質#平面上のベクトル#三角形の辺の比(内分・外分・二等分線)#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(3)\ 三角形ABCにおいて、AB=5,\ AC=6、角Aの大きさは\frac{\pi}{3}であるとする。\\
Aから辺BCに垂線AHを下ろす。このときBH:CH=\boxed{\ \ ウ\ \ }:\boxed{\ \ エ\ \ }\ である。\\
\end{eqnarray}

2022立教大学理学部過去問
投稿日:2022.09.12

<関連動画>

福田の数学〜慶應義塾大学2021年商学部第3問〜平面ベクトルと三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 点Oを原点とする座標平面上の点P,Q,Rを、ベクトル\overrightarrow{ a }=(2,1),\overrightarrow{ b }=(1,2)を用い、\\
位置ベクトル\overrightarrow{ OP }=f(t)\overrightarrow{ a }, \overrightarrow{ OQ }=f(t+2)\overrightarrow{ a }, \overrightarrow{ OR }=g(t)\overrightarrow{ b }で定める。\\
ここで、f(t),g(t)は、実数tを用いて、\\
f(t)=9t^2+1, g(t)=\frac{1}{8}(t^2-6t+9)で表される。\\
(1)\overrightarrow{ a }と\overrightarrow{ b }のなす角を\thetaとする。ただし、0 \leqq \theta \leqq \piとする。このとき、\\
\sin\theta=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} である。\\
\\
(2)t=-\boxed{\ \ ウ\ \ }のとき、点Pと点Qが一致する。それ以外のとき、点P,Q,Rは\\
異なる3点となり、t=\boxed{\ \ エ\ \ }のときその3点が一直線上に並ぶ。\\
\\
(3)-\frac{4}{3} \leqq t \leqq 4の範囲において、上記(2)以外のとき、\triangle PQRの面積は\\
t=\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}で最大値\boxed{\ \ キク\ \ }をとる。
\end{eqnarray}

2021慶應義塾大学商学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題030〜東京大学2016年度文系第1問〜鋭角三角形となる条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上のベクトル#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の3点$P(x,y), Q(-x,-y), R(1,0)$が鋭角三角形をなすための$(x,y)$
についての条件を求めよ。また、その条件を満たす点P(x,y)の範囲を図示せよ。

2016東京大学文系過去問
この動画を見る 

福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、\\
すべての辺の長さは1であり、\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }のどの\\
2つのなす角も\frac{\pi}{3}であるとする。\\
(1)\overrightarrow{ OF }を\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }を用いて表すと、\overrightarrow{ OF }= \boxed{\ \ き\ \ }である。\\
(2)|\overrightarrow{ OF }|,\ \cos \angle AOFを求めると|\overrightarrow{ OF }|= \boxed{\ \ く\ \ },\ \cos \angle AOF=\boxed{\ \ け\ \ }である。\\
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して\\
できる円錐の体積は\boxed{\ \ こ\ \ }である。\\
(4)対角線OF上に点Pをとり、|\overrightarrow{ OP }|=tとおく。点Pを通り、\overrightarrow{ OF }に垂直な平面\\
をHとする。平行六面体OABC-DEFGを平面Hで切った時の断面が六角形\\
となるようなtの範囲は\boxed{\ \ さ\ \ }である。このとき、平面Hと辺AEの交点をQ\\
として、|\overrightarrow{ AQ }|をtの式で表すと|\overrightarrow{ AQ }|=\boxed{\ \ し\ \ }である。また、|\overrightarrow{ PQ }|^2をtの式で表すと\\
|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{\ \ す\ \ }\\
である。\\
(5)平行六面体OABC-DEFGを、直線OFの周りに1回転してできる回転体\\
の体積は\boxed{\ \ こ\ \ }である。
\end{eqnarray}

2022明治大学理工学部過去問
この動画を見る 

【数学】ベクトルの面積公式の語呂合わせ・証明を10分でまとめてみた 

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学】ベクトルの面積公式の語呂合わせ・証明のまとめ動画です
この動画を見る 

【数学】中高一貫校用問題集:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
【問題】
$△ABC$(それぞれの位置ベクトルを$a、b、c$とする)について、以下の問いに答えよ。
(2)頂点$A$と辺$BC$の中点を通る直線のベクトル方程式
※(1)は①の動画で解説しています。
この動画を見る 
PAGE TOP