【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。 - 質問解決D.B.(データベース)

【数Ⅲ】【関数と極限】無限級数1-(x+y)+(x+y)²-(x+y)³+…+{-(x+y)}^n-1 +…が収束し、その和が1/1-xであるとき、yをxの式で表し、そのグラフをかけ。

問題文全文(内容文):
無限級数
$1- (x+y) $$ + (x+y)^2 - (x+y)^3 $$ + \cdots \cdots + \{ -(x+y) \}^{n-1} $$ + \cdots \cdots$
が収束し、その和が $\displaystyle \frac{1}{1-x}$ であるとき、
$y$ を $x$ で表し、そのグラフをかけ。
チャプター:

0:00 問題と方針
0:36 解説

単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
無限級数
$1- (x+y) $$ + (x+y)^2 - (x+y)^3 $$ + \cdots \cdots + \{ -(x+y) \}^{n-1} $$ + \cdots \cdots$
が収束し、その和が $\displaystyle \frac{1}{1-x}$ であるとき、
$y$ を $x$ で表し、そのグラフをかけ。
投稿日:2025.11.13

<関連動画>

大学入試問題#487「みるからに微分」 電気通信大学(2022) #定積分 #極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#関数の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 4 } \displaystyle \frac{1}{x-4}\displaystyle \int_{2}^{\sqrt{ x }} log(1+t^2)dt$

出典:2022年電気通信大学 入試問題
この動画を見る 

福田の数学〜中央大学2021年理工学部第4問〜定積分と不等式、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$自然数$n$に対し,$f_n(x)=x^{-1+\frac{1}{n}}(x\gt 0)$とおく.
また,正の実数$a_n$は$\displaystyle \int_{1}^{a_n}f_n(x)dx=1$満たすものとする.次の問い 
答えよ.

(1)関数$f_n(x)$の不定積分を求めよ.

(2)$a_n$の値と極限$\displaystyle \lim_{n\to\infty}a_n$を求めよ.また,正の実数$b_n$が$\displaystyle \int_{1}^{b_n}f_{n+1}(x)dx=-1$を満たすとき,$b_n$の値と極限$\displaystyle \lim_{n\to\infty}b_n$を求めよ.

(3)2以上の自然数$k$に対して$\displaystyle \int_{k-1}^{k}f_n(x)dx \gt \dfrac{1}{k}$を示し,これを利用して$a_n\lt 4$を証明せよ.

(4)$\displaystyle \int_{1}^{a_n}f_{n+1}(x)dx\lt 1$を示し,これを利用して$a_n\lt a_{n+1}$を証明せよ.

2021中央大理工学部過去問
この動画を見る 

【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
$\displaystyle\frac{3x-4}{2x-3} < x$
この動画を見る 

福田のわかった数学〜高校3年生理系009〜極限(9)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(9)
(1)$|x| \lt 1$のとき、$\lim_{n \to \infty}nx^n=0$を示せ。
(2)$\displaystyle \sum_{n=1}^{\infty}nx^{n-1}$の収束・発散を調べよ。
この動画を見る 

福田の数学・入試問題解説〜東北大学2022年理系第3問〜無限級数の和とはさみうちの原理

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
正の整数nに対して、
$S_n=\sum_{k=1}^n(\sqrt{1+\frac{k}{n^2}}-1)$
とする。
(1)正の実数xに対して、次の不等式が成り立つことを示せ。
$\frac{x}{2+x} \leqq \sqrt{1+x}-1 \leqq \frac{x}{2}$

(2)極限値$\lim_{n \to \infty}S_n$を求めよ。

2022東北大学理系過去問
この動画を見る 
PAGE TOP