熊本大 対数関数の最大値 - 質問解決D.B.(データベース)

熊本大 対数関数の最大値

問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$


$f(x)=log_2x+log_2(6-x)^2$

出典:熊本大学 過去問
単元: #大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#熊本大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$


$f(x)=log_2x+log_2(6-x)^2$

出典:熊本大学 過去問
投稿日:2019.09.01

<関連動画>

チリの大穴が地球を潰すまで計算した

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
チリの大穴の直径が25mだったのに1週間で2倍になりました。
直径が1週間で2倍になると仮定したときいつ地球は崩壊しますか。
この動画を見る 

10大阪府教員採用試験(数学:2番 微積)意外と沼にハマりがち

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#積分とその応用#定積分#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣ $f(x) = \frac{x}{1+x^2}$
f(α)=f(β) , 0 < α < β のとき$\int_α^β \frac{x}{1+x^2}dx= log_β$を示せ
この動画を見る 

大学入試問題#6 学習院大学(2021) 対数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$log_2(log_2(x-2)-log_{\frac{1}{2}}(x-4))=2$を解け。

出典:2021年学習院大学 入試問題
この動画を見る 

【高校数学】 数Ⅱ-140 指数関数・対数関数の最大値・最小値②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$y=4^{x}-2^{x+1}+1$の最小値を求めよう。

②$1 \leqq x \leqq 27$において、関数$y=(\log_3x)^2-\log_3x^4-3$の最大値と最小値を求めよう。
この動画を見る 

早稲田の簡単すぎる問題!満点必須です【数学 入試問題】【早稲田大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$が$\dfrac{1}{3}≦x≦9$の範囲を動くとき,関数 $f(x)=(\log_\frac{1}{3}9x)(log_\frac{1}{3}\dfrac{x}{3})$の最大値と最小値を求めよ。

早稲田大過去問
この動画を見る 
PAGE TOP