大阪大 積分のフリした整数問題 - 質問解決D.B.(データベース)

大阪大 積分のフリした整数問題

問題文全文(内容文):
$a,b,c$を整数とする.
$\displaystyle \int_{a}^{c}(x^2+bx)dx=\displaystyle \int_{b}^{c}(x^2+ax)dx$
①$a\neq b$なら$c$は3の倍数であることを示せ.
②$a\lt b,c=3600$ 整数$(a,b)$は何組であるか?

2021大阪大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$を整数とする.
$\displaystyle \int_{a}^{c}(x^2+bx)dx=\displaystyle \int_{b}^{c}(x^2+ax)dx$
①$a\neq b$なら$c$は3の倍数であることを示せ.
②$a\lt b,c=3600$ 整数$(a,b)$は何組であるか?

2021大阪大過去問
投稿日:2021.03.01

<関連動画>

【まず、2分でOK!一度は当たりたい!】整数:八代白百合学園高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
できるだけ小さい自然数$n$をかける.
できた数が,ある整数の2乗になる.
自然数$n$を求めなさい.

八代白百合学園高等学校過去問
この動画を見る 

慈恵医大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$P$は素数、$a,b,c$自然数
$a$は素数

$a(ab-p^2)=C^2,b \leqq 2C$を満たす

(1)
$(a,b,c)$の組の個数を$P$を用いて表せ

(2)
$a,b,c$の最大公約数1となるような$(a,b,c)$の組の個数を$P$で表せ

出典:2017年東京慈恵会医科大学附属病院 過去問
この動画を見る 

聖マリアンナ医大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p$は素数であり,$x,y,z$は整数である.
$x^3+py^3+p^2z^3-p^3xyz=0$ならば,$x=y=z=0$であることを示せ.

2016聖マリアンナ医大過去問
この動画を見る 

【数A】整数の性質:n³+5nが6の倍数であることを証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n^3+5n$が6の倍数であることを証明せよ。
この動画を見る 

図書館情報大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{(3^n)}+1$は$3$で何回割り切ることができるか.

1991図書館情報大過去問
この動画を見る 
PAGE TOP