【数Ⅲ-174】曲線の長さ①(基本編) - 質問解決D.B.(データベース)

【数Ⅲ-174】曲線の長さ①(基本編)

問題文全文(内容文):
数Ⅲ(曲線の長さ①・基本編)

ポイント
曲線$y=f(x) a \leqq x \leqq b$の長さ$L$は $L=$ ①

②$y=x \sqrt{x}(0 \leqq x \leqq \frac{4}{3})$の長さを求めよ。

③$y=\frac{1}{2}x^2-\frac{1}{4}\log x(1 \leqq x \leqq e)$の長さを求めよ。
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(曲線の長さ①・基本編)

ポイント
曲線$y=f(x) a \leqq x \leqq b$の長さ$L$は $L=$ ①

②$y=x \sqrt{x}(0 \leqq x \leqq \frac{4}{3})$の長さを求めよ。

③$y=\frac{1}{2}x^2-\frac{1}{4}\log x(1 \leqq x \leqq e)$の長さを求めよ。
投稿日:2020.11.03

<関連動画>

中学生の知識でオイラーの公式を理解しよう Vol 7 弧度法 sinの微分

アイキャッチ画像
単元: #複素数平面#微分とその応用#複素数平面#色々な関数の導関数#数学(高校生)#数C#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
中学生の知識でオイラーの公式に関して解説していきます. Vol 7 弧度法 
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第1問(3)〜曲線と直線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#微分とその応用#積分とその応用#微分法#接線と法線・平均値の定理#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)曲線y=$x$$\log(x^2+1)$のx≧0の部分をCとすると、点(1, log2)におけるCの接線lの方程式はy=$\boxed{\ \ く\ \ }$である。
また、曲線Cと直線l、およびy軸で囲まれた図形の面積は$\boxed{\ \ け\ \ }$である。

2023慶應義塾大学医学部過去問
この動画を見る 

【数Ⅲ】微分法:媒介変数で表された関数の2回微分

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
xの関数yが、$\theta$を媒介変数として、$x=\cos\theta-1、y=2\sin\theta+1$と表される時、$\dfrac{d^2y}{dx^2}$を$\theta$の関数として表そう。
この動画を見る 

【微分の使い方】微分を用いたグラフの描き方を解説しました!【数学III】

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 3rd School
問題文全文(内容文):
$y=-x^3+6x^2-9x+2$のグラフを描け。
この動画を見る 

微分方程式 高専数学 p 100(1)(2)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
微分方程式
(1)$\displaystyle \frac{dx}{dt}=\displaystyle \frac{x+t}{t}$
(2)$\displaystyle \frac{dx}{dt}=\displaystyle \frac{x}{t}+e^\frac{x}{t}$
の一般解を求めよ。
この動画を見る 
PAGE TOP