【数Ⅱ】【微分法と積分法】条件からの関数決定2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】条件からの関数決定2 ※問題文は概要欄

問題文全文(内容文):
次の条件を満たす2次関数 $f(x)$ を求めよ。

(1)$\int_{-1}^{1} f(x) \,dx = 0$,
$\int_{0}^{2} f(x) \,dx = 10$
, $\int_{-1}^{1} x f(x) \,dx = \frac{4}{3}$

(2)
$\int_{0}^{2} f(x) \,dx = 1$,
$\int_{0}^{2} x f(x) \,dx = 1$,
$\int_{0}^{2} x^2 f(x) \,dx = 2$
チャプター:

0:00 オープニング
0:06 (1)解説
4:18 (2)解説
8:05 エンディング

単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件を満たす2次関数 $f(x)$ を求めよ。

(1)$\int_{-1}^{1} f(x) \,dx = 0$,
$\int_{0}^{2} f(x) \,dx = 10$
, $\int_{-1}^{1} x f(x) \,dx = \frac{4}{3}$

(2)
$\int_{0}^{2} f(x) \,dx = 1$,
$\int_{0}^{2} x f(x) \,dx = 1$,
$\int_{0}^{2} x^2 f(x) \,dx = 2$
投稿日:2025.03.20

<関連動画>

富山県立大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=kx$と$y=|x^2-2x|$とで囲まれる2つの部分の面積が等しい$k$の値を求めよ$(0 \gt k \gt 2)$

出典:2009年富山県立大学 過去問
この動画を見る 

毎日積分~47都道府県制覇への道~ #Shorts #高校数学 #積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
毎日積分~47都道府県制覇への道
この動画を見る 

大学入試問題#635「意外と簡単」 公立諏訪東京理科大学 #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\displaystyle \int e^x\{f'(x)+f(x)\} dx$

(2)$\displaystyle \int e^x \displaystyle \frac{1+\sin\ x}{1+\cos\ x}\ dx$

出典:2023年公立諏訪東京理科大学 入試問題
この動画を見る 

重積分⑧-6 #155 【一般の変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
これを解け.

$D:\geqq 0,y\geqq 0,\dfrac{x^2}{4}+\dfrac{y^2}{4}\leqq 1$
$\iint_D \ xy \ dx \ dy$
この動画を見る 

#前橋工科大学2024#定積分_13#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} \displaystyle \frac{1}{2}(1-\cos x)^2 dx$

出典:2024年前橋工科大学
この動画を見る 
PAGE TOP