問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (2)\logを自然対数とするとき、次の等式が成り立つ。\\
\lim_{h \to 0}\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+h}\log(|\sin t|^{\frac{1}{h}})dt=
\frac{1}{\boxed{\ \ ウ\ \ }}\log\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}
\end{eqnarray}
2022明治大学全統理系過去問
\begin{eqnarray}
{\large\boxed{1}} \ (2)\logを自然対数とするとき、次の等式が成り立つ。\\
\lim_{h \to 0}\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+h}\log(|\sin t|^{\frac{1}{h}})dt=
\frac{1}{\boxed{\ \ ウ\ \ }}\log\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}
\end{eqnarray}
2022明治大学全統理系過去問
単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}} \ (2)\logを自然対数とするとき、次の等式が成り立つ。\\
\lim_{h \to 0}\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+h}\log(|\sin t|^{\frac{1}{h}})dt=
\frac{1}{\boxed{\ \ ウ\ \ }}\log\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}
\end{eqnarray}
2022明治大学全統理系過去問
\begin{eqnarray}
{\large\boxed{1}} \ (2)\logを自然対数とするとき、次の等式が成り立つ。\\
\lim_{h \to 0}\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+h}\log(|\sin t|^{\frac{1}{h}})dt=
\frac{1}{\boxed{\ \ ウ\ \ }}\log\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}
\end{eqnarray}
2022明治大学全統理系過去問
投稿日:2022.08.31