福田の数学〜明治大学2022年全学部統一入試理系第2問〜方程式の実数解の個数 - 質問解決D.B.(データベース)

福田の数学〜明治大学2022年全学部統一入試理系第2問〜方程式の実数解の個数

問題文全文(内容文):
$a$は$0<a<1$を満たす定数とする。 次の方程式の異なる実数解の個数を求めよう。

$x^2=a^-x$

$f(x) = x^2a^x$ とおけば、
$f(x)$ は $x = [ア]$で極小値$[イ]$をとり、$x= [ウ]$で極大値$[エ]$をとる。
また、$lim(x→-∞) f(x)= [オ]$であり、$ lim(x→∞) f(x)=0$ である。

2022明治大学全統理系過去問

単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a$は$0<a<1$を満たす定数とする。 次の方程式の異なる実数解の個数を求めよう。

$x^2=a^-x$

$f(x) = x^2a^x$ とおけば、
$f(x)$ は $x = [ア]$で極小値$[イ]$をとり、$x= [ウ]$で極大値$[エ]$をとる。
また、$lim(x→-∞) f(x)= [オ]$であり、$ lim(x→∞) f(x)=0$ である。

2022明治大学全統理系過去問

投稿日:2022.09.02

<関連動画>

解の公式の利用 A 2021専大松戸

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a>0とする2次方程式
$x^2-ax+4a=0$の解が
$x=\frac{a ± \sqrt{57} }{2}$となるとき
a=?(a>0)

2021専修大学松戸高等学校
この動画を見る 

高校数学:数学検定準1級2次:問題6 3次方程式の解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定準1級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の2つの3次方程式
$x^3+10x^2+ax+14=0$
$x^3+2x^2+bx-2=0$
はそれぞれ異なる3個の解をもちますが、そのうちの2個は共通な解です。このと き、定数$a,b$の値および共通な2個の解を求めなさい。
この動画を見る 

ちょっと工夫 連立三元方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y+xy=26\\y+z+yz=41 \\
z+x+zx=125
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

福田のおもしろ数学113〜1分チャレンジ〜連立方程式を解こう

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の連立方程式を解け。ただし、$a$,$b$,$c$は0ではない異なる実数とする。
$\begin{array}{1}
a^3x+a^2y+az=1 ...①\\
b^3x+b^2y+bz=1 ...②\\
c^3x+c^2y+cz=1 ...③\\
\end{array}$
この動画を見る 

指数の方程式 (高校範囲)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$4^x+6^x=9^x$
x=?
この動画を見る 
PAGE TOP