福田の数学〜明治大学2022年全学部統一入試理系第2問〜方程式の実数解の個数 - 質問解決D.B.(データベース)

福田の数学〜明治大学2022年全学部統一入試理系第2問〜方程式の実数解の個数

問題文全文(内容文):
$a$は$0<a<1$を満たす定数とする。 次の方程式の異なる実数解の個数を求めよう。

$x^2=a^-x$

$f(x) = x^2a^x$ とおけば、
$f(x)$ は $x = [ア]$で極小値$[イ]$をとり、$x= [ウ]$で極大値$[エ]$をとる。
また、$lim(x→-∞) f(x)= [オ]$であり、$ lim(x→∞) f(x)=0$ である。

2022明治大学全統理系過去問

単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a$は$0<a<1$を満たす定数とする。 次の方程式の異なる実数解の個数を求めよう。

$x^2=a^-x$

$f(x) = x^2a^x$ とおけば、
$f(x)$ は $x = [ア]$で極小値$[イ]$をとり、$x= [ウ]$で極大値$[エ]$をとる。
また、$lim(x→-∞) f(x)= [オ]$であり、$ lim(x→∞) f(x)=0$ である。

2022明治大学全統理系過去問

投稿日:2022.09.02

<関連動画>

【そこに解が見えている…!】解と係数の関係:二次方程式(その3)~中学からの二次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x^2+x+2=0$の2つの解を$ \alpha,\beta $とし,
$ \alpha^n+\beta^n=S(n)$とおくとき,
$ S(1),S(2),S(3),S(4),S(5)$を求めよ.
この動画を見る 

東大 複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}$
$\dfrac{(1-a^n)(1-a^{2n})(1-a^{3n})(1-a^{4n})(1-a^{5n})}{(1-a)(1-a^2)(1-a^3)(1-a^4)(1-a^5)}$の値を求めよ.($n$は自然数である)

1970東大過去問
この動画を見る 

【数Ⅱ】【複素数と方程式】複素数基本 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):

(1)$\left({\displaystyle \frac{3-2i}{2+3i}}\right)^2$

(2)$\left({\displaystyle \frac{-1+\sqrt{3}i}{2}}\right)^2$

(3)$(2+i)^3+(2-i)^3$

(4)$\left(\displaystyle \frac{1}{i}-i\right)\left(\displaystyle \frac{2}{i}+i\right)i^3$

(5)$\displaystyle \frac{2+3i}{3-2i}+\displaystyle \frac{2-3i}{3+2i}$

(6)$\displaystyle \frac{1}{i}+1-i+i²-i³+i⁴$


$x=\displaystyle \frac{-1+\sqrt{5}i}{2}$,$y=\displaystyle \frac{-1-\sqrt{5}i}{2}$であるとき、次の式の値を求めよ。

(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3+x^2y+xy^2$

次の等式を満たす実数x,yの値を求めよ。
(1)$(2i+3)x+(2-3i)y=5-i$
(2)$(1-2i)(x+yi)=2+6i$
(3)$(1+xi)^2+(x+i)^2=0$

(4)$\displaystyle \frac{1}{2+i}+\displaystyle \frac{1}{x+yi}=\displaystyle \frac{1}{2}$


この動画を見る 

解けるように作られた指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
(x+y)^{x-y}=2 \\
2^{y-x},(x+y)=1
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

暗算?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-\sqrt3x+1=0$のとき,
$x^{30}+\dfrac{1}{x^{30}}$の値を求めよ.
この動画を見る 
PAGE TOP