【数Ⅲ-127】微分の方程式への応用 - 質問解決D.B.(データベース)

【数Ⅲ-127】微分の方程式への応用

問題文全文(内容文):
数Ⅲ(微分の方程式への応用)

$a$を定数とするとき、次の$x$についての方程式の異なる実数解の個数を調べよ。

①$e^x=x+a$

②$2x^3-ax^2+1$
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の方程式への応用)

$a$を定数とするとき、次の$x$についての方程式の異なる実数解の個数を調べよ。

①$e^x=x+a$

②$2x^3-ax^2+1$
投稿日:2019.04.06

<関連動画>

慶応義塾大 4次方程式

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3x^4-4x^3-12x^2-k=0$が相異なる4つの実数解をもつ$k$の範囲
そのときの4つの解のうち最大のものを$\alpha$とする。
$\alpha$の範囲を求めよ

出典:1989年慶應義塾大学 過去問
この動画を見る 

【数Ⅲ-129】速度と加速度②(平面上の点の運動編)

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度➁・平面上の点の運動編)

①座標平面上を運動する点$P(x,y)$の時刻$t$における座標が$x=e^t\cos t$、$y=e^t\sin t$であるとき、
点$P$の時刻$t$における速さ$\vec{v}$と加速度$\vec{a}$の大きさをそれぞれ求めよ
この動画を見る 

【数Ⅲ】東大の文系の問題を微分で解いてみた【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
kを正の実数とし,二次方程式$x^{2}+x-k=0$の二つの実数解を、$\alpha,\beta$とする。
$kがk>2$の範囲を動くとき,

$\displaystyle \frac{\alpha^{3}}{1-\beta}+\displaystyle \frac{\beta^{3}}{1-\alpha}$の最小値を求めよ。

東大過去問
この動画を見る 

大学院入試問題#1「間違えてたらすみません」 岡山大学大学院 #微分方程式

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$\displaystyle \frac{dy}{dx}=\displaystyle \frac{4y}{3x},\ x \gt 0$の一般項を求めよ

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
\displaystyle \frac{dy}{dx}=\displaystyle \frac{2y}{3x}+\displaystyle \frac{2x}{y},\ x \gt 0 \\
y(1)=3
\end{array}
\right.
\end{eqnarray}$を満たす解を求めよ

出典:岡山大学大学院 入試問題
この動画を見る 

福田の数学〜慶應義塾大学2023年理工学部第1問(3)〜関数の増減と平均値の定理

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)閉区間[0,1]上で定義された連続関数$h(x)$が、開区間(0,1)で微分可能であり、この区間で常に$h'(x)$<0であるとする。このとき、$h(x)$が区間[0,1]で減少することを、平均値の定理を用いて証明しなさい。
この動画を見る 
PAGE TOP