【数Ⅲ-127】微分の方程式への応用 - 質問解決D.B.(データベース)

【数Ⅲ-127】微分の方程式への応用

問題文全文(内容文):
数Ⅲ(微分の方程式への応用)

$a$を定数とするとき、次の$x$についての方程式の異なる実数解の個数を調べよ。

①$e^x=x+a$

②$2x^3-ax^2+1$
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の方程式への応用)

$a$を定数とするとき、次の$x$についての方程式の異なる実数解の個数を調べよ。

①$e^x=x+a$

②$2x^3-ax^2+1$
投稿日:2019.04.06

<関連動画>

光文社新書「中学の知識でオイラー公式がわかる」Vol11 sinの微分

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
sinの微分解説動画です
$\displaystyle \lim_{ h \to o } \displaystyle \frac{\sin h}{h} =1$
この動画を見る 

福田の数学〜京都大学2023年理系第4問〜複雑な関数の最大値と最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 次の関数f(x)の最大値と最小値を求めよ。
f(x)=$e^{-x^2}$+$\frac{1}{4}x^2$+1+$\frac{1}{e^{-x^2}+\frac{1}{4}x^2+1}$ (-1≦x≦1)
ただし、eは自然対数の底であり、その値はe=2.71...である。

2023京都大学理系過去問
この動画を見る 

【数Ⅲ-125】微分の不等式への応用①

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分の不等式への応用①)

①$x\gt1$のとき、不等式$2\sqrt{x}\gt\log x$を証明せよ

➁$x\gt1$のとき、不等式$\log x\leqq\frac{x}{e}$を証明せよ
この動画を見る 

2^π VS π^2 どっちがでかい?

アイキャッチ画像
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$2^{\pi}$ VS $\pi^2$

ただし,$3.14\lt \pi\lt \dfrac{22}{7}$
$2.7\lt e\lt 2.8$であるとする.
この動画を見る 

【数Ⅲ】微分法:対数微分、この計算式をどうしますか?

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=(1+a^x)^{\frac{1}{x}}$は,$0<a<1$の時単調である
[上級問題精講数学Ⅲ、416(1)]
この動画を見る 
PAGE TOP