大学入試問題#587「落とせない問題」 京都大学(1960) #方程式 - 質問解決D.B.(データベース)

大学入試問題#587「落とせない問題」 京都大学(1960) #方程式

問題文全文(内容文):
$x^3+x+2=0$のとき
$x^5-x$の値を求めよ

出典:1960年京都大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^3+x+2=0$のとき
$x^5-x$の値を求めよ

出典:1960年京都大学 入試問題
投稿日:2023.07.11

<関連動画>

4次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4$つの解を求めよ.
$(x-7.5)^4+(x-8.5)^4=1$
この動画を見る 

複素関数論⑰ コーシーの積分定理の応用2 高専数学* 9(1)(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$c:$原点を中心とする半径$2$の円である.
以下を解け.

$\displaystyle \int_{c}^{} \dfrac{z}{z^2+1}dz$
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第1問〜高次方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)方程式$x^4+5x^3-3x^2+4x+2=0$ は複素数$\displaystyle \frac{1+\sqrt3i}{2}$を解に持つ。
この方程式の実数解を全て求めよ。

2021早稲田大学教育学部過去問
この動画を見る 

解の公式の利用 A 2021専大松戸

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a>0とする2次方程式
$x^2-ax+4a=0$の解が
$x=\frac{a ± \sqrt{57} }{2}$となるとき
a=?(a>0)

2021専修大学松戸高等学校
この動画を見る 

5次式の因数分解 R15中学生はご遠慮ください

アイキャッチ画像
単元: #数Ⅰ#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^5+16x+32$
これを因数分解(整数係数)せよ.
この動画を見る 
PAGE TOP