【数B】ベクトル:ベクトルの基本⑦内積を求めたいときの絶対値の2乗 - 質問解決D.B.(データベース)

【数B】ベクトル:ベクトルの基本⑦内積を求めたいときの絶対値の2乗

問題文全文(内容文):
$a=\sqrt3,b=5,a-b=\sqrt5$のとき、内積a・bを求めよ.
チャプター:

0:00 オープニング
0:11 予備知識
1:19 問題解説
2:11 2乗を計算する
4:28 エンディング

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a=\sqrt3,b=5,a-b=\sqrt5$のとき、内積a・bを求めよ.
投稿日:2022.06.25

<関連動画>

福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)三角形$OAB$において、2つのベクトル$\overrightarrow{ OA }, \overrightarrow{ OB }$は$|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2$,
$\overrightarrow{ OA }・\overrightarrow{ OB }=2$ を満たすとする。実数s,tが
$s \geqq 0, t \geqq 0, 2s+t \leqq 1$
を満たすとき、$\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }$
と表されるような点Pの
存在する範囲の面積は$\boxed{カ}$である。

2021立教大学経済学部過去問
この動画を見る 

【数学B/平面ベクトル】ベクトルの成分表示と大きさ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
動画内の図のベクトル$\vec{ a },\vec{ b },\vec{ c },\vec{ d },\vec{ e }$を成分で表し、それぞれ大きさを求めよ
この動画を見る 

【高校数学】 数B-13 ベクトルの内積②

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\overrightarrow{ 0 }$出ない2つのベクトル$\overrightarrow{ a }・\overrightarrow{ b }$のなす角を$\theta$とすると$\overrightarrow{ a }//\overrightarrow{ b } \iff \overrightarrow{ a }・\overrightarrow{ b }=$①____または
$\overrightarrow{ a }・\overrightarrow{ b }=$②____$\overrightarrow{ a } \bot \overrightarrow{ b } \iff \overrightarrow{ a }・\overrightarrow{ b }=$③____

◎右の図の直角三角形について、次の内積を求めよう。

④$\overrightarrow{ OA } ・ \overrightarrow{ OB }$

⑤$\overrightarrow{ OA } ・ \overrightarrow{ AB }$

⑥$\overrightarrow{ AB } ・ \overrightarrow{ OB }$

⑦$\overrightarrow{ BA } ・ \overrightarrow{ OA }$
この動画を見る 

【高校数学】 数B-26 ベクトル方程式①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
この動画を見る 

【数C】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Oを中心とする半径1の円に内接する四角形ABCDについて、次の条件(I)(II)を考える。
(I)AO=-17/2*AB+5AC (II)OA・OC=OA・OD また、θ=∠AOCとする。次の問いに答えよう。
(1)内積OA・OCをθを用いて表そう。
(2)(I)が成り立つとき、(i)OBをOAとOCを用いて表そう。(ii)cosθの値を求めよう。
この動画を見る 
PAGE TOP