微分法と積分法 数Ⅱ 最大最小を利用した関数の決定2【マコちゃんねるがていねいに解説】 - 質問解決D.B.(データベース)

微分法と積分法 数Ⅱ 最大最小を利用した関数の決定2【マコちゃんねるがていねいに解説】

問題文全文(内容文):
a,bは定数で、a>0とする。関数f(x)=ax⁴-4ax³+b (1≦x≦4) の最大値が9、最小値がー18になるように,定数a,bの値を定めよ。
チャプター:

0:00 オープニング
0:10 問題概要説明
0:32 グラフの概形
1:08 重解の考え方
3:02 aの条件に着目してf(1)とf(4)を比較

単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bは定数で、a>0とする。関数f(x)=ax⁴-4ax³+b (1≦x≦4) の最大値が9、最小値がー18になるように,定数a,bの値を定めよ。
投稿日:2024.10.09

<関連動画>

どう解くか?だ。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$0.2(0.1x -0.8) = \frac{4x+7}{50}$

法政大学
この動画を見る 

いつかの奈良県教員採用試験(数学:バームクーヘンの定理)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$y=\sin x\ (0\leqq x \leqq \pi)$と
$x$軸で囲まれた部分を$y$軸を中心として
回転させる体積$V$を求めよ.
この動画を見る 

愛媛大 三次関数の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=ax^3+3a^2x^2+1(a \neq 0)$
$2 \leqq x \leqq 4$における最小値が$f(2)$になるような$a$の範囲を求めよ


出典:1998年愛媛大学 過去問
この動画を見る 

ε N論法 #5 √n(n→∞)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \sqrt n=+\infty$
$ε N$論法で証明せよ.
この動画を見る 

福田の数学〜早稲田大学2022年商学部第3問〜空間図形の計量

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標空間において、2つの円$C_1,\ C_2$を
$C_1=\left\{(x,y,0)\ | \ x^2+y^2=1\right\},\ C_2=\left\{(0,y,z)\ | \ (y-1)^2+z^2=1\right\}$
とする。次の設問に答えよ。
(1)$C_1$上の2点と$C_2$上の点(0,1,1)を頂点とする正三角形を考える。
このような正三角形の一辺の長さをすべて求めよ。
(2)すべての頂点がC_1∪C_2上にある正四面体を考える。
このような正四面体の一辺の長さをすべて求めよ。

2022早稲田大学商学部過去問
この動画を見る 
PAGE TOP