問題文全文(内容文):
$a$を実数の定義とする。
区間$1 \leqq x \leqq 4$を定義域とする2つの関数$f(x)=ax,g(x)=x^2-4x+9$を考える。
以下の条件を満たすような$a$の範囲をそれぞれ求めよ。
(1)定義域に属するすべての$x$に対して、$f(x) \geqq g(x)$が成り立つ。
(2)定義域に属する$x$で、$f(x) \geqq g(x)$を満たすものがある。
(3)定義域に属するすべての$x_1$と$x_2$に対して、$f(x_1) \geqq g(x_2)$が成り立つ
(4)定義域に属する$x_1$と$x_2$で、$f(x_1) \geqq g(x_2)$を満たすものがある。
$a$を実数の定義とする。
区間$1 \leqq x \leqq 4$を定義域とする2つの関数$f(x)=ax,g(x)=x^2-4x+9$を考える。
以下の条件を満たすような$a$の範囲をそれぞれ求めよ。
(1)定義域に属するすべての$x$に対して、$f(x) \geqq g(x)$が成り立つ。
(2)定義域に属する$x$で、$f(x) \geqq g(x)$を満たすものがある。
(3)定義域に属するすべての$x_1$と$x_2$に対して、$f(x_1) \geqq g(x_2)$が成り立つ
(4)定義域に属する$x_1$と$x_2$で、$f(x_1) \geqq g(x_2)$を満たすものがある。
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a$を実数の定義とする。
区間$1 \leqq x \leqq 4$を定義域とする2つの関数$f(x)=ax,g(x)=x^2-4x+9$を考える。
以下の条件を満たすような$a$の範囲をそれぞれ求めよ。
(1)定義域に属するすべての$x$に対して、$f(x) \geqq g(x)$が成り立つ。
(2)定義域に属する$x$で、$f(x) \geqq g(x)$を満たすものがある。
(3)定義域に属するすべての$x_1$と$x_2$に対して、$f(x_1) \geqq g(x_2)$が成り立つ
(4)定義域に属する$x_1$と$x_2$で、$f(x_1) \geqq g(x_2)$を満たすものがある。
$a$を実数の定義とする。
区間$1 \leqq x \leqq 4$を定義域とする2つの関数$f(x)=ax,g(x)=x^2-4x+9$を考える。
以下の条件を満たすような$a$の範囲をそれぞれ求めよ。
(1)定義域に属するすべての$x$に対して、$f(x) \geqq g(x)$が成り立つ。
(2)定義域に属する$x$で、$f(x) \geqq g(x)$を満たすものがある。
(3)定義域に属するすべての$x_1$と$x_2$に対して、$f(x_1) \geqq g(x_2)$が成り立つ
(4)定義域に属する$x_1$と$x_2$で、$f(x_1) \geqq g(x_2)$を満たすものがある。
投稿日:2021.04.30