どっちがでかい? - 質問解決D.B.(データベース)

どっちがでかい?

問題文全文(内容文):
$1.11^{111}$と$1111$どっちが大きい??
単元: #数Ⅱ#式と証明#指数関数と対数関数#整式の除法・分数式・二項定理#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1.11^{111}$と$1111$どっちが大きい??
投稿日:2023.12.19

<関連動画>

福田の数学〜大阪大学2023年理系第1問〜不等式の証明と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#関数と極限#微分とその応用#数列の極限#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ nを2以上の自然数とする。
(1)0≦x≦1のとき、次の不等式が成り立つことを示せ。
$\frac{1}{2}x^2$≦$\displaystyle(-1)^n\left\{\frac{1}{x+1}-1-\sum\_{k=2}^n(-x)^{k-1}\right\}$≦$x^n-\frac{1}{2}x^{n+1}$
(2)$a_n$=$\displaystyle\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ とするとき、次の極限値を求めよ。
$\displaystyle\lim_{n \to \infty}(-1)^nn(a_n-\log 2)$

2023大阪大学理系過去問
この動画を見る 

ハルハル様の作成問題 手筋連発

アイキャッチ画像
単元: #数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x$についての方程式
$x^3+x^2-x-5=0$の最小の実数解を$\alpha$とする。
$\alpha^5$の整数部分を求めよ。
この動画を見る 

【数Ⅱ】式と証明:分数式の基本2

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の分数式を約分せよ。$\dfrac{a^3-a^2b+ab^2}{a^3+b^3}$
この動画を見る 

福田のおもしろ数学275〜分母の違う項がたくさん並んだ方程式の解

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の方程式を満たす$x$を求めて下さい。
$\frac{x-2020}{1}+\frac{x-2019}{2}+\cdots+\frac{x-2000}{21} = \frac{x-1}{2020}+\frac{x-2}{2019}+\cdots+\frac{x-21}{2000} $
この動画を見る 

自治医大 関数の最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#2次関数#式と証明#2次関数とグラフ#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=4^x+4^{-x}-2^{x+1}-2^{1-x}$
$f(x)$の最小値とその時の$x$の値を求めよ

出典:自治医科大学 過去問
この動画を見る 
PAGE TOP