なんと1分で求められる!?一橋2020年度過去問10の10乗を2020で割ったあまりを求めます!#shorts #一橋大学 #過去問 - 質問解決D.B.(データベース)

なんと1分で求められる!?一橋2020年度過去問10の10乗を2020で割ったあまりを求めます!#shorts #一橋大学 #過去問

問題文全文(内容文):
10の10乗を2020で割ったあまりをも求めよ
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
10の10乗を2020で割ったあまりをも求めよ
投稿日:2024.01.14

<関連動画>

【数学】医学部1分解説!!2018年度聖マリアンナ医科大学大問1(1)基本公式が分かる人向け #shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを1でない正の実数とする。
このとき$\log_2{a}+\log_8{a^2}+\log_{a^6}{32}+\log_a{\sqrt{a}}+\log_{\sqrt{a}}{a}=0$
を満たすaの値で最大のものは(ア)である。
この動画を見る 

東大 積分 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq a \leqq \beta$ 実数

$f(x)=x^2-(a+ \beta)z+a \beta$

$\displaystyle \int_{-1}^{ 1 }f(x)dx=1$が成立している。

定積分$s=\displaystyle \int_{0}^{ a }f(x)ax$を$a$の式で表し、$S$の最大値を求めよ。


出典:2008年東京大学 過去問
この動画を見る 

福田の数学〜京都大学2022年文系第2問〜条件を満たす経路の総数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
下図(※動画参照)の三角柱ABC-DEFにおいて、Aを始点として、辺に沿って
頂点をn回移動する。すなわち、この移動経路
$P_0 \to P_1 \to P_2 \to \ldots \to P_{n-1} \to P_n$ (ただし$P_0=A$)
において、$P_0P_1,P_1P_2,\ldots,P_{n-1}P_n$は全て辺であるとする。
また、同じ頂点を何度通ってよいものとする。このような移動経路で、終点$P_n$がA,B,Cの
いずれかとなるものの総数$a_n$を求めよ。

2022京都大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (5)3進法で表された3n桁の整数                   \\
\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }              \\
がある(ただし、nは自然数とする)。この数は、1 \leqq k \leqq nを満たす全て\\
の自然数kに対して、最小の位から数えて3k番目の位の数が2、3k-1番目の位\\
の数が1、3k-2番目の位の数が0である。この数を10進法で表した数をa_n\\
とおく。\\
(\textrm{i})a_2=\boxed{\ \ ク\ \ }\ である。\\

2021慶應義塾大学薬学部過去問
(\textrm{ii})a_nをnの式で表すと、\boxed{\ \ ケ\ \ }\ である。
\end{eqnarray}
この動画を見る 

青山学院大 放物線の中の四角形

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#青山学院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
青山学院大学過去問題
$f(x)=-x^2+4x$
原点O,A(4,0),P(p,f(p)),Q(q,f(q)) (0<p<q<4)
四角形OAQPの面積の最大値
この動画を見る 
PAGE TOP