整数 九州大 - 質問解決D.B.(データベース)

整数 九州大

問題文全文(内容文):
$a^2+b^2=3c^2$を満たす自然数$a,b,c$は存在しないことを示せ.

2014九州大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^2+b^2=3c^2$を満たす自然数$a,b,c$は存在しないことを示せ.

2014九州大過去問
投稿日:2020.04.28

<関連動画>

福田の数学〜東北大学2023年理系第4問〜1の5乗根

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#複素数平面#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 実数a=$\frac{\sqrt5-1}{2}$に対して、整式f(x)=$x^2$-$ax$+1を考える。
(1)整式$x^4$+$x^3$+$x^2$+$x$+1 はf(x)で割り切れることを示せ。
(2)方程式f(x)=0の虚数解であって虚部が正のものを$\alpha$とする。$\alpha$を極形式で表せ。ただし、$r^5$=1を満たす実数rがr=1のみであることは、認めて使用してよい。
(3)設問(2)の虚数$\alpha$に対して、$\alpha^{2023}$+$\alpha^{-2023}$の値を求めよ。

2023東北大学理系過去問
この動画を見る 

灘中 ちょっと合同式

アイキャッチ画像
単元: #算数(中学受験)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#過去問解説(学校別)#数学(高校生)#灘中学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
連続した5つの整数の積が2441880 最初の整数は?

出典:2002年灘中学校 過去問
この動画を見る 

素数を扱う整数問題の良問!分からなければ実験あるのみ!【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
f(x)=x³+2x²+2
|f(n)|と|f(n+1)|が素数となる整数nをすべて求めよ。
この動画を見る 

福田の数学〜東京大学2025理系第4問〜関数の値が平方数となる条件

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

この問いでは、

$0$以上の整数の$2$乗になる数を平方数と呼ぶ。

$a$を正の整数とし、

$f_a (x) = x^2+x-a$とおく。

(1)$n$を正の整数とする。

$f_a(n)$は平方数ならば、$n\leqq a$であることを示せ。

(2)$f_a (n)$が平方数となる正の整数$n$の個数を

$N_a$とおく。

次の条件$(i),(ii)$が同値であることを示せ。

$(i)\quad N_a=1$である。

$(ii)\quad 4a+1$は素数である。

$2025$年東京大学理系過去問題
この動画を見る 

4次式の整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$n^4-4n^3+22n^2-36n+18=N^2$
が平方数となるnをすべて求めよ
この動画を見る 
PAGE TOP