数検準1級2次過去問【2020年12月】1番:三角関数 - 質問解決D.B.(データベース)

数検準1級2次過去問【2020年12月】1番:三角関数

問題文全文(内容文):
1⃣
(1) $θ=\frac{\pi}{10}$のとき
$sin2θ=cos3θ$を示せ
(2)$sin \frac{\pi}{10}$を求めよ。
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#加法定理とその応用#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣
(1) $θ=\frac{\pi}{10}$のとき
$sin2θ=cos3θ$を示せ
(2)$sin \frac{\pi}{10}$を求めよ。
投稿日:2020.12.11

<関連動画>

福田のわかった数学〜高校2年生080〜三角関数(19)2直線のなす角(3)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(19) なす角(3)
2点A(0,2), B(0,8)がある。点P(a,0) $(a \gt 0)$について$\angle APB$が最大となるaは?
この動画を見る 

cosの和を求める

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos \dfrac{\pi}{7}-\cos \dfrac{2\pi}{7}+\cos \dfrac{3\pi}{7}$を求めよ
この動画を見る 

福田の数学〜中央大学2022年理工学部第2問〜三角関数と2直線のなす角

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$AB = 1, \angle ABC = 90°,\angle BCA = 7.5°$である$△ABC$ の辺BC 上に $AD = CD$ と
なるように点Dをとる。このとき、$BD = \boxed{コ}, CD=\boxed{サ}$である。したがって、
$\tan 7.5° =\frac{1}{\boxed{コ}+\boxed{サ}}$
次に、正の実数kに対して、2直線$y=3kx, y = 4kx$のなす角度を$θ$とする。
だし、$0° \lt θ \lt 90°$である。このとき、$\tanθ = \boxed{シ}$である。したがって、$\tanθ$ は
$k =\frac{1}{\boxed{ス}}$ のとき最大値$\frac{1}{\boxed{セ}}$ をとる。また、$k=\frac{1}{\boxed{ス}}$ のとき$\boxed{ソ}$を満たす。
なお、必要ならば
$\sqrt2 = 1.4, \sqrt3=1.7..., \sqrt5=2.2, \sqrt6=2.4...$
を用いてよい。

$\boxed{コ},\boxed{サ}$の解答群
$ⓐ\sqrt2+\sqrt3\ \ \ ⓑ\sqrt2+\sqrt5\ \ \ ⓒ\sqrt2+\sqrt6\ \ \ ⓓ2+\sqrt3$
$ⓔ2+\sqrt5\ \ \ ⓕ2+\sqrt6\ \ \ ⓖ\sqrt3+\sqrt5\ \ \ ⓗ\sqrt5+\sqrt6$

$\boxed{シ}$の解答群
$ⓐ\frac{k}{1-12k^2}\ \ \ ⓑ\frac{k}{1+12k^2}\ \ \ ⓒ\frac{7k}{1-12k^2}\ \ \ ⓓ\frac{7k}{1+12k^2}$
$ⓔ\frac{12k^2}{1-12k^2}\ \ \ ⓕ\frac{12k^2}{1+12k^2}$
$ⓖ\frac{12k^2}{1-7k^2}\ \ \ ⓗ\frac{12k^2}{1+7k^2}$

$\boxed{ス},\boxed{セ}$の解答群
$ⓐ2\ \ \ ⓑ2\sqrt2\ \ \ ⓒ3\ \ \ ⓓ2\sqrt3\ \ \ ⓔ4\ \ \ ⓕ3\sqrt2$
$ⓖ3\sqrt3 \ \ \ ⓗ4\sqrt2 \ \ \ ⓘ6\ \ \ ⓙ4\sqrt3 \ \ \ ⓚ7\ \ \ ⓛ7\sqrt2$

$\boxed{ソ}$の解答群
$ⓐθ \gt 7.5°\ \ \ ⓑθ = 7.5°\ \ \ ⓒθ \lt 7.5°$

2022中央大学理工学部過去問
この動画を見る 

【高校数学】 数Ⅱ-122 三角関数の合成⑤

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$y=2\sin x \cos x+\sin x \cos x+1$の最大値と最小値を求めよう。
この動画を見る 

【良問】数IIの知識で解けます【山形大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#点と直線#円と方程式#加法定理とその応用#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$T=\dfrac{sin\theta cos\theta}{1+sin^2\theta}$とする。
$\theta$が$0<\theta<\dfrac{\pi}{2}$の範囲を動くとき、$T$の最大値を求めよ。

山形大過去問
この動画を見る 
PAGE TOP