福田のわかった数学〜高校2年生031〜円と放物線の位置関係(3) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生031〜円と放物線の位置関係(3)

問題文全文(内容文):
数学$\textrm{II}$ 円と放物線の位置関係(3)
円$x^2+(y-a)^2=r^2$ $(a \gt 0,r \gt 0) \ldots①$
放物線$ y=\displaystyle\frac{1}{2}x^2 \ldots②$
が次の条件を満たすとき$a$の範囲、$r$を$a$で表せ。
(1)原点$\rm O$で接し、かつ他に共有点を持たない。
(2)異なる2点で接する。
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円と放物線の位置関係(3)
円$x^2+(y-a)^2=r^2$ $(a \gt 0,r \gt 0) \ldots①$
放物線$ y=\displaystyle\frac{1}{2}x^2 \ldots②$
が次の条件を満たすとき$a$の範囲、$r$を$a$で表せ。
(1)原点$\rm O$で接し、かつ他に共有点を持たない。
(2)異なる2点で接する。
投稿日:2021.06.15

<関連動画>

【高校数学】 数Ⅱ-65 円と直線の共有点①

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の円と直線の共有点の座標を求めよう。

①$x^2+y^2=2,2x-y+3=0$

②$x^2+y^2=5,2x-y-5=0$

◎次の円と直線の共有点の個数を求めよう。

③$x^2+y^2=1, y=-2x+3$

④$x^2+y^2=5,2x-y-2-0$
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(12)共通接線、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$(x-4)^2+y^2=1$ $\cdots$②
の共通接線を全て求めよ。
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{7}}\ i$を虚数単位とする。$\alpha=-1+i$とし、zは次の条件をともに満たす複素数とする。
条件1.$\frac{z-\alpha}{z-\bar{\alpha}}$の実部は0である。
条件2.zの虚部は0以上である。
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で
囲まれる部分の面積は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\pi$である。
また、$w=\frac{iz}{z+1}$で表される点wがとりうる値全体の集合を表す図形と、
図形Cで囲まれる部分の面積は$\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$である。

2022早稲田大学人間科学部過去問
この動画を見る 

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線$y=ax+1$が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。
この動画を見る 

原点を中心とする円周上には無数に有理点がある。ピタゴラス数と関係が?

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#図形と方程式#微分法と積分法#円と方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
原点を中心とする円周上には無数に有理点がある。ピタゴラス数と関係があるのか解説していきます.
この動画を見る 
PAGE TOP