福田の一夜漬け数学〜数列・シグマ記号(1)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・シグマ記号(1)〜高校2年生

問題文全文(内容文):
次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n(3k^2+7k+2)$
(2)$\displaystyle \sum_{k=1}^nk(k^2+1)$
(3)$\displaystyle \sum_{k=1}^n(-2)^{k-1}$

次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n\frac{1}{k(k+1)}$
(2)$\displaystyle \sum_{k=1}^n\frac{1}{\sqrt k+\sqrt{k+1}}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n(3k^2+7k+2)$
(2)$\displaystyle \sum_{k=1}^nk(k^2+1)$
(3)$\displaystyle \sum_{k=1}^n(-2)^{k-1}$

次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n\frac{1}{k(k+1)}$
(2)$\displaystyle \sum_{k=1}^n\frac{1}{\sqrt k+\sqrt{k+1}}$
投稿日:2018.04.26

<関連動画>

信州大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=\displaystyle \frac{1}{12}$

$a_{n+1}=\displaystyle \frac{a_{n}}{1+6(n+1)(n+2)a_{n}}$

(1)
一般項を求めよ

(2)
$\displaystyle \sum_{k=1}^n a_k$

出典:2010年信州大学 過去問
この動画を見る 

2021!を5の504乗で割ったあまり

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021!$を$5^{504}$で割った余りを求めよ.
この動画を見る 

数列 数B 約数の和と複利計算【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
初項が1,公比が3である等比数列で、初めて100より大きくなるのは第何項
か。また,初項から第何項までの和が初めて 1000より大きくなるか。

次の数の正の約数の和を求めよ
(1)$3^7$
(2)$3^4×7^3$
(3)864

初項1,公比2,項数nの等比数列において,各項の和、積、逆数の和を,それぞれS,P,Tとするとき,等式$S^n=P^2T^n$が成り立つことを証明せよ。

毎年度初めに1万円ずつ積み立てる。年利率を0.6%とし、1年ごとの複利で第10年度末には元利合計はいくらになるか。ただし,$1.006^10=1.0616$ として計算し,1円未満は切り捨てよ。
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年2B第4問〜数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
[1]自然数$n$に対して、$S_n=5^n-1$とする。さらに、数列$\left\{a_n\right\}$の初項から
第$n$項までの和が$S_n$であるとする。このとき、$a_1=\boxed{\ \ ア\ \ }$である。また
$n \geqq 2$のとき
$a_n=\boxed{\ \ イ\ \ }・\boxed{\ \ ウ\ \ }^{n-1}$
である。この式は$n=1$の時にも成り立つ。
上で求めたことから、すべての自然数$n$に対して
$\sum_{k=1}^n\displaystyle \frac{1}{a_k}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}\left(1-\boxed{\ \ キ\ \ }^{-n}\right)$
が成り立つことが分かる。

[2]太郎さんは和室の畳を見て、畳の敷き方が何通りあるかに興味を持った。
ちょうど手元にタイルがあったので、畳をタイルに置き換えて、
数学的に考えることにした。
縦の長さが1、横の長さが2の長方形のタイルが多数ある。
それらを縦か横の向きに、隙間も重なりもなく敷き詰めるとき、
その敷き詰め方をタイルの「配置」と呼ぶ。

上の図(※動画参照)のように、縦の長さが3,横の長さが$2n$の長方形を$R_n$とする。
$3n$枚のタイルを用いた$R_n$内の配置の総数を$r_n$とする。
$n=1$のときは、下の図(※動画参照)のように$r_1=3$である。

また、$n=2n4$ときは、下の図(※動画参照)のように$r_2=11$である。

(1)太郎さんは次のような図形$T_n$内の配置を考えた。
$(3n+1)$枚のタイルを用いた$T_n$内の配置の総数を$t_n$とする。$n=1$
のときは、$t_1=\boxed{\ \ ク\ \ }$である。
さらに、太郎さんは$T_n$内の配置について、右下隅のタイルに注目して
次のような図(※動画参照)をかいて考えた。

この図(※動画参照)から、2以上の自然数$n$に対して
$t_n=Ar_n+Bt_{n-1}$
が成り立つことが分かる。ただし、$A=\boxed{\ \ ケ\ \ }, B=\boxed{\ \ コ\ \ }$である。
以上から、$t_2=\boxed{\ \ サシ\ \ }$であることが分かる。
同様に、$R_n$の右下隅のタイルに注目して次のような図(※動画参照)をかいて考えた。

この図(※動画参照)から、2以上の自然数$n$に対して
$r_n=Cr_{n-1}+Dt_{n-1}$
が成り立つことが分かる。ただし、$C=\boxed{\ \ ス\ \ }, D=\boxed{\ \ セ\ \ }$である。

(2)畳を縦の長さが1, 横の長さが2の長方形と見なす。縦の長さが3, 横の長さが6
の長方形の部屋に畳を敷き詰めるとき、敷き詰め方の総数は$\boxed{\ \ ソタ\ \ }$である。
また、縦の長さが、横の長さがの長方形の部屋に畳を敷き詰めるとき、
敷き詰め方の総数は$\boxed{\ \ チツテ\ \ }$である。

2021共通テスト過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年文系第3問〜漸化式と最大公約数

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師:
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{3}}}\ 数列\left\{a_n\right\}を次のように定める。\\
a_1=4, a_{n+1}=a_n^2+n(n+2)\\
(1)a_{2022}を3で割った余りを求めよ。\\
(2)a_{2022},a_{2023},a_{2024}の最大公約数を求めよ。
\end{eqnarray}

2022東京大学文系過去問
この動画を見る 
PAGE TOP